\qquad Date \qquad Class \qquad
LEsson Reteach

11-8 Multiplying and Dividing Radical Expressions

Use the Product and Quotient Properties to multiply and divide radical expressions.

Product Property of Square Roots	Quotient Property of Square Roots
$\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$; where $a \geq 0$ and $b \geq 0$	$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} ;$ where $a \geq 0$ and $b>0$
Multiply $\sqrt{6} \sqrt{10}$. $\sqrt{6} \sqrt{10}$	A quotient with a square root in the denominator is not simplified. Rationalize the denominator by multiplying by a form of 1 to get a perfect square.
$\sqrt{6 \cdot 10} \quad \begin{aligned} & \text { Product Property of Square } \\ & \text { Roots }\end{aligned}$	
$\sqrt{60} \quad$ Multiply the factors in the radicand.	Simplify $\sqrt{\frac{10}{3}}$.
$\sqrt{4 \cdot 15} \quad$ Factor 60 using a perfect square factor.	$\sqrt{\frac{10}{3}}=\frac{\sqrt{10}}{\sqrt{3}} \quad$ Quotient Property
$\sqrt{4} \cdot \sqrt{15} \quad \begin{aligned} & \text { Product Property of Square } \\ & \text { Roots }\end{aligned}$	$\frac{\sqrt{10}}{\sqrt{3}}\left(\frac{\sqrt{3}}{\sqrt{3}}\right) \quad$ Multiply by form of 1.
Roots $2 \sqrt{15} \quad$ Simplify.	$\frac{\sqrt{30}}{\sqrt{9}} \quad$ Product Property
	$\frac{\sqrt{30}}{3} \quad$ Simplify.

Multiply. Then simplify.

1. $\sqrt{3} \sqrt{12}$
2. $\sqrt{5} \sqrt{10}$
3. $\sqrt{8} \sqrt{11}$

Rationalize the denominator of each quotient. Then simplify.
4. $\frac{\sqrt{7}}{\sqrt{2}}$

5. $\frac{\sqrt{8}}{\sqrt{3}}\left(\frac{\square}{\square}\right)$
6. $\frac{\sqrt{12}}{\sqrt{5}}\left(\frac{\square}{\square}\right)$
\qquad Date \qquad Class \qquad

LEsson) Reteach

1188 Multiplying and Dividing Radical Expressions (continued)

Terms can be multiplied and divided if they are both under the radicals OR if they are both outside the radicals.

Multiply $\sqrt{3}(6+\sqrt{8})$. Write the product in simplest form.
$\sqrt{3}(6+\sqrt{8})$
$\sqrt{3}(6)+\sqrt{3} \sqrt{8} \quad$ Distribute.
$6 \sqrt{3}+\sqrt{24} \quad$ Multiply the factors in the radicand.
$6 \sqrt{3}+\sqrt{4 \cdot 6} \quad$ Factor 24 using a perfect square factor.
$6 \sqrt{3}+\sqrt{4} \sqrt{6} \quad$ Product Property of Square Roots
$6 \sqrt{3}+2 \sqrt{6} \quad$ Simplify.

Use FOIL to multiply binomials with square roots.
Multiply $(3+\sqrt{2})(4+\sqrt{2})$.
$(3+\sqrt{2})(4+\sqrt{2})$
$3(4)+3 \sqrt{2}+4 \sqrt{2}+\sqrt{2} \sqrt{2} \quad$ FOIL.
$12+3 \sqrt{2}+4 \sqrt{2}+\sqrt{4}$
$12+3 \sqrt{2}+4 \sqrt{2}+2$
$14+7 \sqrt{2}$
Add.

Multiply. Write each product in simplest form.
7. $\sqrt{5}(4+\sqrt{8})$
8. $\sqrt{2}(\sqrt{2}+\sqrt{14})$
$\sqrt{5} \square+\sqrt{5} \square$
9. $(6+\sqrt{3})(5-\sqrt{3})$
(6) (\square)]) $-(6)$ \square) $+\sqrt{3}$ \square]) $-\sqrt{3}($ \square
10. $(5+\sqrt{10})(8+\sqrt{10})$

Practice A

11-8 Multiplying and Dividing Radical Expressions Multiply. Write each product in simplest form.

1. $\sqrt{3} \cdot \sqrt{15}$	2. $(2 \sqrt{7})^{2}$	3. $3 \sqrt{5 t} \cdot \sqrt{40 t}$
$\sqrt{3 \cdot 15}$	$2 \sqrt{7} \cdot 2 \sqrt{7}$	$3 \cdot \sqrt{(5 t)(40 t)}$
$\sqrt{45}$	$\underline{2} \cdot \underline{2} \cdot \sqrt{7} \cdot \sqrt{7}$	3. $\sqrt{200 t^{2}}$
$\sqrt{9 \cdot 5}$	$\frac{4}{4} \cdot \sqrt{7} \cdot 7$	$3 \cdot \sqrt{2 \cdot 100 \cdot t^{2}}$
	$\underline{4} \cdot \sqrt{49}$	
$3 \sqrt{5}$	28	$30 t \sqrt{2}$
4. $\sqrt{10} \cdot \sqrt{5}$	5. $(3 \sqrt{10})^{2}$	6. $6 \sqrt{7 x} \cdot \sqrt{8 x}$
$5 \sqrt{2}$	90	$12 x \sqrt{14}$
7. $\sqrt{3}(\sqrt{6}-2)$	8. $\sqrt{6}(\sqrt{2}-\sqrt{3 t})$	9. $(2-\sqrt{5})(7+\sqrt{5})$
$\sqrt{3}(\sqrt{6})-\sqrt{3}(2)$	$\sqrt{6}(\sqrt{2})-\sqrt{6}(\sqrt{3} t)$	$14+2 \sqrt{5}-\underline{7 \sqrt{5}}-\underline{5}$
$\sqrt{18}-2 \sqrt{3}$	$\sqrt{12}-\sqrt{18 t}$	
$3 \sqrt{2}-2 \sqrt{3}$	$2 \sqrt{3}-3 \sqrt{2 t}$	$9-5 \sqrt{5}$
10. $\sqrt{5}(\sqrt{5}-8)$	11. $\sqrt{7}(\sqrt{7}+\sqrt{5})$	12. $(3+\sqrt{2})(\sqrt{2}-4)$
$5-8 \sqrt{5}$	$7+\sqrt{35}$	$-\sqrt{2}-10$
Simplify each quotient.		
13. $\frac{\sqrt{3}}{\sqrt{5}}$	14. $\frac{\sqrt{11}}{\sqrt{3}}$	15. $\frac{\sqrt{5}}{\sqrt{32 b}}$
$\sqrt{3} \cdot \sqrt{5}$	$\sqrt{11} \cdot \frac{\sqrt{3}}{\sqrt{3}}$	$\sqrt{5} \cdot \sqrt{2 b}$
$\sqrt{5} \quad \sqrt{5}$	$\sqrt{3} \sqrt{\underline{3}}$	$\underline{4} \cdot \sqrt{2 b} \sqrt{2 b}$
$\frac{\sqrt{15}}{5}$	$\frac{\sqrt{33}}{3}$	$\frac{\sqrt{10 b}}{8 b}$
16. $\frac{\sqrt{5}}{\sqrt{6}}$	17. $\frac{\sqrt{10}}{\sqrt{2}}$	18. $(4+\sqrt{3})(5-\sqrt{3})$
$\frac{\sqrt{30}}{6}$	$\sqrt{5}$	$17+\sqrt{3}$
	59	Holt Algebra 1
${ }^{\text {LESSONN }}$ Practice		
11-8 Multiplying and Dividing Radical Expressions		

11-6. Multiplying and Dividing Radical Expressions Multiply. Write each product in simplest form.

1. $\sqrt{15} \cdot \sqrt{5}$	2. $\sqrt{42} \cdot \sqrt{12}$	3. $(2 \sqrt{10})^{2}$
$5 \sqrt{3}$	$6 \sqrt{14}$	40
4. $(5 \sqrt{5})^{2}$	5. $3 \sqrt{6 x} \cdot \sqrt{10 x}$	6. $4 \sqrt{6 x} \cdot \sqrt{12 x}$
125	$6 x \sqrt{15}$	$24 x \sqrt{2}$
7. $\sqrt{3}(\sqrt{12}+6)$	8. $\sqrt{6}(\sqrt{10 c}-\sqrt{8})$	9. $(10+\sqrt{5})(4-\sqrt{5})$
$6+6 \sqrt{3}$	$2 \sqrt{15 c}-4 \sqrt{3}$	$35-6 \sqrt{5}$
10. $\sqrt{7}(\sqrt{14}+2)$	11. $\sqrt{3}(\sqrt{3}-\sqrt{6})$	12. $(9-\sqrt{3})(4-\sqrt{3})$
$7 \sqrt{2}+2 \sqrt{7}$	$3-3 \sqrt{2}$	$39-13 \sqrt{3}$
13. $(4+\sqrt{5})(1-\sqrt{5})$	14. $(2 \sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})$	15. $(9-\sqrt{3})^{2}$
$-1-3 \sqrt{5}$	$13-3 \sqrt{15}$	$84-18 \sqrt{3}$
Simplify each quotient.		
16. $\frac{\sqrt{3}}{\sqrt{5}}$	17. $\frac{\sqrt{8}}{\sqrt{3}}$	18. $\frac{\sqrt{24}}{4 \sqrt{3}}$
$\frac{\sqrt{15}}{5}$	$\frac{2 \sqrt{6}}{3}$	$\frac{\sqrt{2}}{2}$
19. $\frac{\sqrt{18}}{\sqrt{2}}$	20. $\frac{2 \sqrt{2}}{\sqrt{8}}$	21. $\frac{-\sqrt{48 x}}{2 \sqrt{8}}$
3	1	$-\frac{\sqrt{6 x}}{2}$
22. $\frac{\sqrt{11}}{\sqrt{72 x}}$	23. $\frac{\sqrt{96}}{3 \sqrt{8 x}}$	24. $-\frac{\sqrt{200 m}}{2 \sqrt{3 m}}$
$\sqrt{22 x}$	$\underline{2 \sqrt{3 x}}$	$5 \sqrt{6}$
12x	$3 x$	3
25. Find the area of a triangle whose base is given by the expression $3 \sqrt{6} \mathrm{~m}$ and whose height is given by the expression $2 \sqrt{8} \mathrm{~m}$.$12 \sqrt{3} \mathrm{~m}^{2}$		
26. The area of a rectangle is $3 \sqrt{50} \mathrm{yd}^{2}$. Find the width if the length is $3 \sqrt{5} \mathrm{yd}$.		
Cand	61	Holt Algebra 1

Practice B
11-8 Multiplying and Dividing Radical Expressions

Multiply. Write each product in simplest form

1. $\sqrt{15} \cdot \sqrt{6}$	2. $(3 \sqrt{6})^{2}$	3. $4 \sqrt{7 x} \cdot \sqrt{20 x}$
$\sqrt{15 \cdot 6}$	$3 \sqrt{6} \cdot 3 \sqrt{6}$	$4 \cdot \sqrt{(7 x)(20 x)}$
$3 \sqrt{10}$	54	$8 x \sqrt{35}$
4. $\sqrt{12} \cdot \sqrt{5}$	5. $(2 \sqrt{7})^{2}$	6. $-2 \sqrt{5 b} \cdot \sqrt{10 b}$
$2 \sqrt{15}$	28	$-10 b \sqrt{2}$
7. $3 \sqrt{10 y} \sqrt{6 y}$	8. $\sqrt{8}(\sqrt{12}-\sqrt{2})$	9. $\sqrt{2 x}(\sqrt{5}+\sqrt{2 x})$
$6 y \sqrt{15}$	$4 \sqrt{6}-4$	$\sqrt{10 x}+2 x$
10. $\sqrt{2}(\sqrt{7}-5)$	11. $\sqrt{10}(\sqrt{5 m}-\sqrt{4})$	12. $(4+\sqrt{3})(2-\sqrt{3})$
$\sqrt{14}-5 \sqrt{2}$	$5 \sqrt{2 m}-2 \sqrt{10}$	$5-2 \sqrt{3}$
13. $\sqrt{3}(\sqrt{8}-6)$	14. $\sqrt{5}(\sqrt{2}+\sqrt{8})$	15. $(5+\sqrt{2})(6-\sqrt{2})$
$2 \sqrt{6}-6 \sqrt{3}$	$3 \sqrt{10}$	$28+\sqrt{2}$
16. $\sqrt{5}(\sqrt{2}-\sqrt{6})$	17. $(3-\sqrt{2})(5+\sqrt{2})$	18. $(7+\sqrt{3})(7-\sqrt{3})$
$\sqrt{10}-\sqrt{30}$	$13-2 \sqrt{2}$	46

Simplify each quotient.

22. | 19. $\frac{\sqrt{2}}{\sqrt{6}}$ | $\frac{\sqrt{3}}{3}$ |
| :---: | :---: |
| 25. $\frac{\sqrt{3}}{\sqrt{3 a}}$ | |
| | $\frac{\sqrt{105}}{15}$ |
23. $\frac{\sqrt{10}}{\sqrt{11}}$
$\frac{\sqrt{110}}{11}$

24. $\frac{\sqrt{13}}{\sqrt{50 t}}$
25. $\frac{\frac{\sqrt{26 t}}{10 t}}{\sqrt{\sqrt{32 z}}}-\frac{\frac{\sqrt{6 z}}{3 z}}{\text { 27. } \frac{-\frac{\sqrt{75 k}}{10 \sqrt{2 k}}}{}}$| $-\frac{\sqrt{6}}{4}$ |
| ---: |

Holt Algebra 1

60

Reteach

11-8 Multiplying and Dividing Radical Expressions
Use the Product and Quotient Properties to multiply and divide radical expressions.

Product Property of Square Roots	Quotient Property of Square Roots
$\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}$; where $a \geq 0$ and $b \geq 0$	$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} ;$ where $a \geq 0$ and $b>0$
Multiply $\sqrt{6} \sqrt{10}$. $\sqrt{6} \sqrt{10}$ $\sqrt{6 \cdot 10} \quad$ Product Property of Square Roots	A quotient with a square root in the denominator is not simplified. Rationalize the denominator by multiplying by a form of 1 to get a perfect square.
	Simplify $\sqrt{\frac{10}{3}}$.
$\sqrt{4 \cdot 15} \quad$ Factor 60 using a perfect square factor.	$\sqrt{\frac{10}{3}}=\frac{\sqrt{10}}{\sqrt{3}} \quad$ Quotient Property
$\sqrt{4} \cdot \sqrt{15} \quad \begin{aligned} & \text { Product Property of Square } \\ & \text { Roots }\end{aligned}$	$\frac{\sqrt{10}}{\sqrt{3}}\left(\frac{\sqrt{3}}{\sqrt{3}}\right) \quad$ Multiply by form of 1.
$2 \sqrt{15} \quad \text { Simplify. }$	$\frac{\sqrt{30}}{\sqrt{9}} \quad$ Product Property
	$\frac{\sqrt{30}}{3}$ Simplify.

Multiply. Then simplify.

1. $\sqrt{3} \sqrt{12}$	2. $\sqrt{5} \sqrt{10}$	3. $\sqrt{8} \sqrt{11}$
6	$5 \sqrt{2}$	$2 \sqrt{22}$
Rationalize the denominator of each quotient. Then simplify.		
4. $\frac{\sqrt{7}}{\sqrt{2}}\left(\frac{\sqrt{\sqrt{2}}}{\frac{\sqrt{2}}{}}\right)$	5. $\frac{\sqrt{8}}{\sqrt{3}}\left(\frac{\sqrt{\sqrt{3}}}{\sqrt{\sqrt{3}}}\right)$	6. $\frac{\sqrt{12}}{\sqrt{5}}\left(\frac{\sqrt{ } 5}{\sqrt{\sqrt{5}}}\right)$
$\frac{\sqrt{14}}{2}$	$\frac{2 \sqrt{6}}{3}$	$\frac{2 \sqrt{15}}{5}$
	62	Holt Algebra 1

