## Lesson 2 <br> Operations on

## Polynomials

## Date:

## Chapter 1: Polynomials Lesson 2: Operations on Polynomials

 BEDMAS

In an algebraic expression, the terms are the different parts of the expression separated by a + or -

term term term

- Monomial: 1 term algebraic expression Ex:
- Binomial: 2-term algebraic expression Ex:
- Trinomial: 3-term algebraic expression Ex:
- Polynomial: Many-term algebraic expression Ex:
- The degree of a monomial: Sum of the exponents of its variables

Ex:



- The coefficient of a term: The number at the front of a variable

- LIKE TERMS:


Don't forge+ BEMDAS

Adding Polynomials
Example:

$$
\begin{aligned}
& \left(5 x^{2} y+3 x-9\right)+\left(4 x^{2} y-2 x+7\right) \\
& 9 x^{2} y+x-2
\end{aligned}
$$

STEPS:

1) Drop the brackets if it's a plus sign at the front of the brackets.
2) Put like terms together.

Polynomials are in simplest form when they contain no like terms.

$$
x^{2}+2 x+1+3 x^{2}-4 x
$$

when simplified becomes

$$
4 x^{2}-2 x+1
$$

| Like Terms | Like Terms | Not Like Terms |
| :---: | :---: | :---: |
| $2 x y, 4 x y,-3 x y$ | $4 a^{2} b^{3}, 9 a^{2} b^{3}$ | $x^{2}, x, 2 x^{3}, 4$ |

Subtracting Polynomials

| $\left(4 x^{2}+11 x-13\right)-\left(-2 x^{2}-7 x+8\right)$ |
| :--- |
| Example: |
| STEPS: <br> $\frac{\text { change the sign of each }}{\text { term inside the brackets }}$ <br> if it' a minus sign at the front <br> of the brackets. <br> 2) put like terms together. |
| $4 x^{2}+11 x-13+2 x^{2}+7 x-8$ |

Multiplying a polynomial by a Monomial

$$
\begin{aligned}
& \text { Example: } \\
& \text { 1) } 5 a b\left(3 a^{2}+4 b-7\right) \\
& 15 a^{3} b+20 a b^{2}-35 a b
\end{aligned}
$$

STEPS:

1) Multiply each of the term of the polynomial by the monomial.

Reminder:
When multiplying variables, use the law of exponents.

$$
\begin{array}{ll}
\text { 2) } \frac{3}{4} x^{2}\left(\frac{2}{3} x-8 x^{2}\right) & \text { 3) } \begin{array}{l}
4 x+5 x(3 x-4) \\
\frac{6}{12} x^{3}-\frac{24}{4} x^{4} \\
\hline \frac{4 x+15 x^{2}-20 x}{2} x^{3}-6 x^{4}
\end{array} \quad 15 x^{2}-16 x
\end{array}
$$

Multiplying a BINOMIAL by a BINOMIAL

$$
\begin{aligned}
& \begin{array}{l}
\text { Example: } \\
\begin{array}{l}
\text { 1) }(3 x+5)(2 x-4) \\
6 x^{2}-12 x+10 x-20
\end{array} \\
\begin{array}{ll}
\text { First Outer Inner Last } \\
\text { example }(x+3)(x+2)
\end{array} \\
6 x^{2}-2 x-20 \\
\text { F: }(x+3)(x+2) \\
\text { O: }(x+3)(x+2) \\
\text { I: }(x+3)(x+2) \\
\text { L: }(x+3)(x+2)
\end{array}
\end{aligned}
$$

2) $(x-2)^{2}$

$$
\begin{aligned}
& (x-2)(x-2) \\
& x^{2}-2 x-2 x+4 \\
& x^{2}-4 x+4
\end{aligned}
$$

3) 

$$
\begin{aligned}
& (x+1)(x-3)(x-2) \\
& \left(x^{2}-3 x+x-3\right)(x-2) \\
& \left(x^{2}-2 x-3\right)(x-2) \\
& x^{3}-2 x^{2}-2 x^{2}+4 x-3 x+6 \\
& x^{3}-4 x^{2}+x+6
\end{aligned}
$$

Dividing a Polynomial by a Monomial

Example:

$$
\begin{gathered}
\left(12 x^{3}+8 x^{2} y-3 x\right) \div 3 x \\
12 x^{3}+8 x^{2} y-3 x \\
3 x \\
4 x^{2}+\frac{8}{3} x y-1
\end{gathered}
$$

STEPS:

1) Divide each of the term of the polynomial by the monomial.

Reminder:
when dividing variables, use the law of exponents.

$$
\begin{gathered}
\left(-15 x^{3} y^{2}+25 x^{2} y-55 x y^{4}\right) \div-5 x y^{2} \\
3 x^{2}-5 x y^{-1}+11 y^{2}
\end{gathered}
$$

from workbook p.7-8 \#17b)
$\mathrm{P}=\frac{2}{3} x^{2}-\frac{3}{2} x+1 \quad \mathrm{Q}=\frac{3}{2} x^{2}+\frac{5}{6} x-\frac{1}{3}$ et $\mathrm{R}=\frac{3}{2} x-\frac{1}{6}$ Détermine

$$
\begin{aligned}
& \mathrm{P}-\mathrm{Q}+\mathrm{R}- \\
& \left(\frac{2}{3} x^{2}-\frac{3}{2} x+1\right)-\left(\frac{3}{2} x^{2}+\frac{5}{6} x-\frac{1}{3}\right)+\left(\frac{3}{2} x-\frac{1}{6}\right) \\
& \frac{-\frac{5}{6} x^{2}-\frac{5}{6} x+\frac{7}{6}}{}
\end{aligned}
$$

Evaluate an algebraic expresssion:
Simply replace any variables with the prescribed value.

Ex. Evaluate if $P(x)$ if $x=-4$

$$
\begin{aligned}
P(x) & =2 x^{2}-3 x+7 \\
& =2(-4)^{2}-3(-4)+7 \\
& =2(16)-3(-4)+7 \\
& =32+12+7 \\
& =51
\end{aligned}
$$

Simplify:
a) $2 x^{3}-5 x^{3}+7 x^{3}$
b) $4 x^{2} y-6 x^{2} y+x^{2} y$
c) $\frac{3}{4} x^{2}+\frac{2}{3} x^{2}-x^{2} \square \frac{5}{12} x^{2}$
d) $-\frac{2}{3} x y^{2}+\frac{3}{4} x y^{2}-\frac{5}{6} x y^{2}$

$$
\frac{-3}{4} x y^{2}
$$

## What is the product?

a) $-3 x^{2} \times 4 x^{3} \quad \square-12 x^{5}$
c) $-17 x^{2} \times-3 x \quad \square 51 x^{3}$
e) $3 x^{2} y \times-5 x y \times-2 x y^{2} \square 30 x^{4} y^{4}$
g) $3 x^{2} y \times \frac{2}{5} x y^{2} \times \frac{10}{9} x \square \frac{1}{4}+3$
b) $2 x^{2} y^{3} \times-3 x y^{2}-6 x^{3} y^{5}$
d) $-7 x^{2} y \times 5 x^{2} y^{2}-35 x^{4} y^{3} \square$
f) $20 x^{2} y^{2} \times-0.5 x \times-1.2 y^{2} \square 12 x^{3} y^{4}$
h) $\frac{-3}{5} x^{2} y^{3} \times \frac{2}{3} x y \times \frac{-5}{2} x y^{2}, \square$
what is the quotient?
a) $-12 x^{4} \div 3 x^{6}$

b) $18 x^{6} \div 12 x^{4}$
d) $-12 x^{2} y^{4} \div 6 x^{3} y$
f) $\left(4 x^{2} y^{3}\right)^{3} \div\left(2 x y^{2}\right)^{4}$


Simplify the following polynomials

$$
-2 x^{2}-x+1
$$

a) $\mathrm{P}(x)=3 x^{2}+2 x-5 x^{2}-3 x+1$
b) $\mathrm{P}(x, y)=3 x^{3} y-2 x y^{2}+4 x^{3} y-x y^{2}$
c) $\mathrm{P}(z)=4 z^{3}-5 z^{2}+8 z^{3}-z^{2}+4 z-5+6 z^{2}-12 z$
d) $\mathrm{P}(x)=\frac{3}{2} x^{2}+5 x^{3}-\frac{2}{3} x^{2}-\frac{3}{2} x^{3}+\frac{3}{4} x-\frac{5}{2} x$


Evaluate the following polynomials
a) $\mathrm{P}(x)=3 x^{2}+5 x$ for $x=-2$

c) $\mathrm{P}(x)=3 x^{2}+2 x-5$ for $x=-1.5-1.25$
d) $\mathrm{P}(x)=2 x^{2}-7 x-15$ for $x=-\frac{3}{2}$ O

Given $\mathrm{P}=3 x^{2}-2 x+1, \mathrm{Q}=-x^{2}-3 x+2$ and $\mathrm{R}=-2 x+5$. Determine:
a) $P+Q+R$
b) $\mathrm{P}-\mathrm{Q}+\mathrm{R}$
c) $P-Q-R$
d) $-P+Q-R$
a) $2 x^{2}-7 x+8$
b) $4 x^{2}-x+4$
C) $4 x^{2}+3 x-6$
d) $-4 x^{2}+x-4$

Perform the operations
a) $\left(4 x^{2}-8 x+1\right)-\left(2 x^{2}-3 x+5\right) 2 x^{2}-5 x-4$
b) $\left(3 x^{2}-2 x y^{2}+3 x y\right)+\left(2 x^{2}+3 x^{2} y-5 x y\right)$ $\square$
c) $\left(3 a^{2} b-5 a b^{2}\right)-\left(2 a^{2} b+3 a b^{2}\right) a^{2} b-8 a b^{2}$
b) $5 x^{2}+x y^{2}-2 x y$

What is the product?
a) $3 x^{2}(2 x-5)$
b) $-3 y\left(y^{2}-2 y\right)$
c) $-2 x^{2}\left(3 x y^{2}+5 x^{2} y\right)$
d) $(2 x y-5 x)\left(-3 x^{2} y\right)$
a) $6 x^{3}-15 x^{2}$
b) $-3 y^{3}+6 y^{2}$
c) $-6 x^{3} y^{2}-10 x^{4} y$
d) $-6 x^{3} y^{2}+15 x^{3} y$

Multiply the binomials:
a) $(x+3)(x-2)$
b) $(x-5)(3-x)$ $\square$
c) $(2 a+b)(3 a-2 b)$ $\square$ d) $(5-2 x)(3 x-4)$
a) $x^{2}+x-6$
b) $-x^{2}+8 x-15$
c) $6 a^{2}-a b-2 b^{2}$
d) $-6 x^{2}+23 x-20$

## Perform the operations:

$$
\begin{aligned}
& (3 x+5 y)^{2}-(3 x-5 y)^{2} \quad 60 x y \\
& (2 x+3)\left(4 x^{2}+9\right)(2 x-3) \quad 16 x^{4}-81
\end{aligned}
$$

What makes Polynomial Operations difficult?

What are your strategies to combat this?

You can now do:
WB

- Page

