ACTIVITY 2 Trigonometric circle and trigonometric points

A circle centered at 0 with radius 1 has been drawn in the Cartesian plane on the right. This circle is called the trigonometric circle. Any point P(x, y) on this circle is called a trigonometric point.

Any trigonometric point P(x, y) verifies the equation $x^2 + y^2 = 1$ and, conversely, any point P(x, y) that verifies the equation $x^2 + y^2 = 1$ is trigonometric.

Determine if the following points are trigonometric.

a)
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$
 No b) $(1, 0)$ Yes c) $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ Yes d) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ Yes e) $\left(\frac{\sqrt{3}}{2}, \frac{-1}{2}\right)$ Yes f) $(0, -1)$ Yes

$$(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) \underline{\text{Yes}}$$

d)
$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
 Yes

e)
$$\left(\frac{\sqrt{3}}{2}, \frac{-1}{2}\right)$$
 Yes

f)
$$(0,-1)$$
 Yes

TRIGONOMETRIC CIRCLE AND TRIGONOMETRIC POINTS

- The trigonometric circle is a circle centered at 0, the origin of the Cartesian plane, with a radius of 1.
- Any point P(x, y) on the unit circle is called a trigonometric point. We have:

- **4.** The point $\left(\frac{a-4}{13}, \frac{a+3}{13}\right)$ is a trigonometric point. Determine the possible values for a. $\left(\frac{a-4}{13}\right)^2 + \left(\frac{a+3}{13}\right)^2 = 1 \ (a-4)^2 + (a+3)^2 = 169 \Leftrightarrow 2a^2 - 2a - 144 = 0 \Leftrightarrow a = 9 \text{ or } a = -8.$
- **5.** Determine the possible values for x if the following points are trigonometric.

a)
$$P(x, 1) = x = 0$$

b)
$$P(x, \frac{1}{2})$$
 $x = -\frac{\sqrt{3}}{2}$ or $x = \frac{\sqrt{3}}{2}$

a)
$$P(x, 1) = x = 0$$

c) $P(x, 0.6) = x = -0.8 \text{ or } x = 0.8$

d)
$$P(x, \frac{5}{13})$$
 $x = -\frac{12}{13}$ or $x = \frac{12}{13}$

6. In each of the following cases, determine the coordinates of the trigonometric point P.

a)
$$P\left(\frac{1}{2}, y\right) \in 4$$
th quadrant. $P\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$
b) $P(-0.6, y) \in 2$ nd quadrant. $P(-0.6, 0.8)$

b)
$$P(-0.6, y) \in 2nd \text{ quadrant.}$$
 P(-0.6, 0.8)

c)
$$P\left(\frac{\sqrt{3}}{2}, y\right) \in \text{lst quadrant.}$$
 $P\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

c)
$$P\left(\frac{\sqrt{3}}{2}, y\right) \in 1$$
st quadrant. $P\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
d) $P\left(-\frac{1}{2}, y\right) \in 3$ rd quadrant. $P\left(-\frac{1}{2}, \frac{-\sqrt{3}}{2}\right)$