Acijvici 3 Locating a trigonometric point

Consider the trigonometric circle on the right, a trigonometric point $\mathrm{P}(x, y)$ and the measure t, in radians, of the trigonometric angle A0P. $(0 \leqslant t \leqslant 2 \pi)$
a) What is the length of arc AP? Justify your answer.

The unit circle has a radius of $r=1$ unit. The length s of the arc AP is therefore $s=r t=1 \times t=t$ units.
b) Let $\mathrm{P}(t)$ represent the trigonometric point associated with the trigonometric angle $t .(t \in \mathbb{R})$
Determine the Cartesian coordinates (x, y) of the following trigonometric points $\mathrm{P}(t)$.

1. $\mathrm{P}(0)$
$(1,0)$
2. $P\left(\frac{\pi}{2}\right)$ \qquad 3. $\mathrm{P}(\pi)-(-1,0)$
3. $\mathrm{P}\left(\frac{3 \pi}{2}\right) \xrightarrow[(0,-1)]{ }$
4. $P(2 \pi)$
$(1,0)$
5. $P\left(-\frac{\pi}{2}\right) \quad(0,-1)$
6. $\mathrm{P}(-\pi) \quad(-\mathbf{1}, 0)$
7. $\mathrm{P}\left(-\frac{3 \pi}{2}\right)$
$(0,1)$
8. $\mathrm{P}(-2 \pi)(\mathbf{1}, \boldsymbol{0})$
c) Is it true to say that for each real number t, there is a unique corresponding trigonometric point on the trigonometric circle? Yes

d) Can we say that each trigonometric point $\mathrm{P}(x, y)$ on the trigonometric circle corresponds to a unique trigonometric angle t ? \qquad No

LOCATING A TRIGONOMETRIC POINT

- Each real number t corresponds to a unique point on the unit circle written as $\mathrm{P}(t)$.
$\mathrm{P}(t)$ is the extremity of the arc whose origin is the point $\mathrm{P}(0)$ and whose directed measure is equal to t.
$\mathrm{P}(x, y)$ is the Cartesian notation of this point.
Ex.: $\mathrm{P}\left(0^{\circ}\right)=\mathrm{P}(1,0)$

$$
\mathrm{P}\left(90^{\circ}\right)=\mathrm{P}(0,1)
$$

- If t is positive, we locate the point $\mathrm{P}(t)$ by moving in a counter-clockwise direction.

- If t is negative, we locate the point $\mathrm{P}(t)$ by moving in a clockwise direction.

Ex.:

