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Consicler the trigonometric circle r:n the right, a trigonometric point
and the measure t, in radianq of the trigonometric angle AOP. (0 < r <
a) What is the length of arc AP? Justifir your answer.

The unit circl?bas s radius of r = 7 unit. The length s of the arc

APistherefores=rt =I X t=f unifs.

b) Let P(r) represent the trigonometric point associated with the
trigonometr:ic angle r. (r e R)

Determine the Cartesian coordinates (x, y) of the following
trigonometric points P(t). , \i. P(0) rr, o) 2. Pl;] (o, r) 3

4. pl*l ro, -rl 5. p(zx) G, o) 6.-l2l 

-

7. P(-*) -J:1,!)- 8. ef-$l ro, rr e.-( 2)
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unique trigonometric angle r?

Each real number r corresponds to a unique point on the unit
circle written as P(rJ.

P(r) is the extremity of the arc n,hose origin is the point P(0) and
whose directed measure is equal to r.

;:: ?,ilT;i," 
notation or this Point

P(90') : P(0, l)

If t is pcsitive, rve
locate the point
P(r) by moving in a
counter-clocku'ise
direction.

If r is uegative, we
locate the point P(r)
by moving in a clock-
u'ise direction.
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