12. Knowing that $\mathrm{P}(t)=\left(\cos t, \frac{5}{13}\right)$ is a trigonometric point located in the 2 nd quadrant, determine
a) $\cos t=$ \qquad b) $\sec t=\frac{\frac{-13}{12}}{\frac{-12}{5}}$
c) $\csc t=\frac{\frac{5}{13}}{}$
d) $\tan t=\frac{-5}{12}$
e) $\cot t=$ \qquad
13. For each of the following trigonometric points, give the two possible values for the missing coordinate.
a) $\mathrm{P}\left(\frac{1}{2}, \cdots\right) \pm \frac{\sqrt{3}}{2}$
b) $\mathrm{P}\left(\ldots, \frac{\sqrt{3}}{2}\right) \pm \frac{1}{2}$
c) $\mathrm{P}(\ldots, 0.6) \pm 0.8$
d) $\mathrm{P}\left(\frac{-5}{13}, \ldots\right) \pm \frac{\mathbf{1 2}}{\mathbf{1 3}}$
e) $\mathrm{P}\left(\frac{2}{3}, \ldots\right) \pm \frac{\sqrt{5}}{3}$
f) $\mathrm{P}\left(\ldots, \frac{\sqrt{2}}{2}\right) \pm \frac{\sqrt{2}}{2}$
14. A trigonometric point $\mathrm{P}(t)$ has an x-coordinate of $\cos t=0.8$.
a) If the point $\mathrm{P}(t)$ is located in the 1 st quadrant,
15. determine the y-coordinate $\sin t . \quad \sin \boldsymbol{t}=\boldsymbol{0 . 6}$
16. deduce, in degrees, the value of t knowing that $0 \leqslant t \leqslant 90^{\circ}$. $t=36.9^{\circ}$
17. deduce, in degrees, the value of t knowing that $360^{\circ} \leqslant t \leqslant 450^{\circ}$.

b) If the point $\mathrm{P}(t)$ is located in the 4 th quadrant,
18. determine the y-coordinate $\sin t . \quad \sin t=-0.6$
19. deduce, in degrees, the value of t knowing that $270^{\circ} \leqslant t \leqslant 360^{\circ}$. $\boldsymbol{t}=\mathbf{3 2 3 . 1}{ }^{\circ}$
20. deduce, in degrees, the value of t knowing that $630^{\circ} \leqslant t \leqslant 720^{\circ}$. $\boldsymbol{t}=\mathbf{6 8 3 . 1 ^ { \circ }}$
21. A trigonometric point $\mathrm{P}(t)$ has an x-coordinate of $\cos t=-0.6$.
a) If the point $\mathrm{P}(t)$ is located in the 2 nd quadrant,
22. determine the y-coordinate $\sin t . \underline{\sin } \boldsymbol{t}=\boldsymbol{0} . \boldsymbol{8}$
23. deduce, in degrees, the value of t knowing that $90^{\circ} \leqslant t \leqslant 180^{\circ}$. $t=53.1^{\circ}$
24. deduce, in degrees, the value of t knowing that $450^{\circ} \leqslant t \leqslant 540^{\circ}$.

$$
t=413.1^{\circ}
$$

b) If the point $\mathrm{P}(t)$ is located in the 3 rd quadrant,

1. determine the y-coordinate $\sin t$. \qquad $\sin t=-0.8$
2. deduce, in degrees, the value of t knowing that $180^{\circ} \leqslant t \leqslant 270^{\circ}$.

$$
t=233.1^{\circ}
$$

3. deduce, in degrees, the value of t knowing that $540^{\circ} \leqslant t \leqslant 630^{\circ}$. \qquad
4. A trigonometric point $\mathrm{P}(t)$ has a y-coordinate of $\sin t=\frac{5}{13}$.
a) If the point $\mathrm{P}(t)$ is located in the 1 st quadrant,
5. determine the x-coordinate $\cos t . \quad \cos t=\frac{12}{13}$
6. deduce, in degrees, the value of t knowing that $0^{\circ} \leqslant t \leqslant 90^{\circ} . \boldsymbol{t = 2 2 . \boldsymbol { 6 } ^ { \circ }}$
b) If the point $\mathrm{P}(t)$ is located in the 2 nd quadrant,

7. determine the x-coordinate $\cos t$. $\quad \cos \boldsymbol{t}=\frac{\mathbf{- 1 2}}{\mathbf{1 3}}$
8. deduce, in degrees, the value of t knowing that $90^{\circ} \leqslant t \leqslant 180^{\circ} . \quad t=\mathbf{1 5 7 . 4}{ }^{\circ}$
