- **12.** Knowing that $P(t) = \left(\cos t, \frac{5}{13}\right)$ is a trigonometric point located in the 2nd quadrant, determine
 - a) $\cos t = \frac{\frac{-12}{13}}{\frac{-5}{12}}$ b) $\sec t = \frac{\frac{-13}{12}}{\frac{-12}{5}}$ c) $\csc t = \frac{\frac{5}{13}}{\frac{-12}{5}}$ d) $\tan t = \frac{\frac{-5}{12}}{\frac{-5}{12}}$ e) $\cot t = \frac{\frac{-12}{5}}{\frac{-12}{5}}$
- **13.** For each of the following trigonometric points, give the two possible values for the missing coordinate.

a)
$$P\left(\frac{1}{2},...\right) = \pm \frac{\sqrt{3}}{2}$$
 b) $P\left(...,\frac{\sqrt{3}}{2}\right) = \pm \frac{1}{2}$ c) $P(...,0.6) = \pm 0.8$
d) $P\left(\frac{-5}{13},...\right) = \pm \frac{12}{13}$ e) $P\left(\frac{2}{3},...\right) = \pm \frac{\sqrt{5}}{3}$ f) $P\left(...,\frac{\sqrt{2}}{2}\right) = \pm \frac{\sqrt{2}}{2}$

14. A trigonometric point P(t) has an *x*-coordinate of $\cos t = 0.8$.

- a) If the point P(t) is located in the 1st quadrant,
 - 1. determine the y-coordinate sin t. _____ sin t = 0.6
 - 2. deduce, in degrees, the value of t knowing that $0 \le t \le 90^\circ$. t = 36.9°
 - 3. deduce, in degrees, the value of t knowing that $360^{\circ} \le t \le 450^{\circ}$. t = 396.9°
- **b)** If the point P(t) is located in the 4th quadrant,
 - 1. determine the *y*-coordinate sin *t*. sin t = -0.6
 - 2. deduce, in degrees, the value of t knowing that $270^{\circ} \le t \le 360^{\circ}$. $t = 323.1^{\circ}$
 - 3. deduce, in degrees, the value of t knowing that $630^{\circ} \le t \le 720^{\circ}$. $t = 683.1^{\circ}$

15. A trigonometric point P(t) has an *x*-coordinate of $\cos t = -0.6$.

- a) If the point P(t) is located in the 2nd quadrant,
 - 1. determine the *y*-coordinate sin *t*. sin t = 0.8
 - 2. deduce, in degrees, the value of *t* knowing that $90^{\circ} \le t \le 180^{\circ}$. <u> $t = 53.1^{\circ}$ </u>
 - 3. deduce, in degrees, the value of *t* knowing that $450^{\circ} \le t \le 540^{\circ}$. <u>*t*</u> = 413.1°
- **b)** If the point P(t) is located in the 3rd quadrant,
 - 1. determine the *y*-coordinate sin *t*. sin t = -0.8
 - 2. deduce, in degrees, the value of t knowing that $180^\circ \le t \le 270^\circ$. $t = 233.1^\circ$
 - 3. deduce, in degrees, the value of t knowing that $540^{\circ} \le t \le 630^{\circ}$. $t = 593.1^{\circ}$

- **a)** If the point P(t) is located in the 1st quadrant,
 - 1. determine the *x*-coordinate cos *t*. $\frac{\cos t = \frac{12}{13}}{\cos t = \frac{12}{13}}$
 - 2. deduce, in degrees, the value of t knowing that $0^{\circ} \le t \le 90^{\circ}$. $t = 22.6^{\circ}$
- **b)** If the point P(t) is located in the 2nd quadrant,
 - 1. determine the *x*-coordinate $\cos t$. $\frac{\cos t}{13} = \frac{-12}{13}$
 - 2. deduce, in degrees, the value of t knowing that $90^{\circ} \le t \le 180^{\circ}$. $t = 157.4^{\circ}$

© Guérin, éditeur ltée

5.3 Trigonometric circle **203**

-1

sin

sin

sin

1 cos

1 cos

1 cos

-1

_1