## Lesson 5:

 Factoring:Multi-step Factoring and word Problems

do the chant
grouping factoring
万) difference of squares
trinomial

Multi-Step Factoring

$$
\begin{array}{rlrl}
2 x^{3}-18 x & =2 x\left(x^{2}-9\right) & & \leftarrow \text { remove the common factor } \\
& =2 x(x+3)(x-3) & \leftarrow \text { difference of squares }
\end{array}
$$

$$
4 x(2 x+3)+4 x^{2}-9=4 x(2 x+3)+(2 x+3)(2 x-3)
$$

$$
=(2 x+3)[4 x+(2 x-3)] \quad \leftarrow \text { difference of squares }
$$

$$
\begin{aligned}
& =3(2 x+3)(2 x-1) \quad \text { remove the common factor } \\
& =
\end{aligned}
$$

## word problems

## example \#1

what is the perimeter of this rectangle if both dimensions can be expressed as binomials?


```
\(2 x(3 x-8)+3(3 x-8)\)
\((3 x-8)(2 x+3)\)\(\quad \begin{aligned} p & =2(5 x-5) \\ & =10 x-10\end{aligned}\)
```

example \#2

In the following figure, segment RD is 2 units long. Quadrilateral ABCD is a
rectangle. The polynomial $x^{2}+6 x+9$ represents the area of square APQR rectangle. The polynomial $x^{2}+6 x+9$ represents the area of square AP
The polynomial $2 x^{2}+8 x-14$ represents the area of the shaded region.


What binomial represents the length of segment $A B$ ?

$$
\overline{A B}=3 x-1
$$

(1)
$x^{2}+6 x+9$
$(x+3)(x+3)$
Area $A B C D$
$\left(x^{2}+6 x+9\right)+\left(2 x^{2}+8 x-14\right)$
$3 x^{2}+14 x-5$
(3) $x + 5 \longdiv { 3 x - 1 } \sqrt [ 3 x ^ { 2 } + 1 4 x - 5 ] { }$

$$
-\left(3 x^{2}+15 x\right)
$$

$$
\begin{array}{r}
-x-5 \\
\frac{x-5}{-x-5} \\
\hline 0
\end{array}
$$

example \#3

## Rectangles $A B C D$ and CDEF share a common side $C D$ as shown below. The area of rectangle ABCD is given by the expression $\left(12 x^{2}-11 x-15\right) \mathrm{m}^{2}$ The area of rectangle CDEF is given by the expression $\left(18 x^{2}-9 x-35\right) \mathrm{m}^{2}$. What binomial corresponds to the length of segment AE?


(3)

## 

1215
$\begin{aligned} & 3 x - 5 \longdiv { 1 8 x ^ { 2 } - 9 x - 3 5 } \\ & \frac{-\left(18 x^{2}-30 x\right)}{21 x-35}\end{aligned}$
(1) $\frac{-20}{12 x^{2}-11 x-15}+\frac{9}{9}=-11$
$12 x^{2}-20 x+9 x-15$
$904 x(3 x-5)+3(3 x-5)$ $(3 x-5)(4 x+3)$
nus has to be $18 x^{2}-9 x-35 \quad$ common side not divisible $21 x-35$
0 by 3
factor $18 x^{2}-9 x-35 \quad 1630$
2315 $18 x^{2}+21 x-30 x-35$
 $3 x(6 x+7)-5(6 x+7)$ $(3 x-5)(6 x+7)$

| + | $=$ |
| :---: | :---: |
| 1 | 630 |
| 2 | 315 |
| 3 | 210 |
| 5 | 126 |
| 6 | 105 |
| 7 | 90 |
| 9 | 70 |
| 14 | 45 |
| 15 | 42 |
| 18 | 35 |
| 21 | 30 |



$$
25 x^{2}+10 x+1=(5 x+1)(5 x+1)
$$

(2) playground $(5 x+1)-3 x=2 x+1$

## (3) $x<x=5 x-13$

$$
A=(2 x+1)(5 x-13)=10 x^{2}-21 x-13
$$

example \#5 In the diagram below,

- The area of rectangle ABEF is represented by the trinomial $6 x^{2}+7 x-3$.
- The area of rectangle $B C D E$ is represented


## (1)



$$
\begin{aligned}
\overline{A C} & =(3 x-1)+(5 x-2) \\
& =8 x-3
\end{aligned}
$$

example \#6
Given the diagram below, the polynomial
$10 x^{2}-x-2$ represents the area of the assume that
rectangle DEFG. dimensions can be


Factor What is the polynomial that represents the

> Area area of the shaded region?

$$
\begin{array}{rlrl}
10 x^{2}-x-2 \\
10 x^{2}-5 x+4 x-2 \\
5 x(2 x-1)+2(2 x-1) & \text { (2) } & =(2 x-1)+4 \\
(2 x-1)(5 x+2) & G D & =(5 x+2)+4 \\
& = & (2 x+3 \\
& & & 5 x+6
\end{array}
$$

(4) ABCG - DEFG

$$
\left(10 x^{2}+27 x+18\right)-\left(10 x^{2}-x-2\right)
$$

$$
28 x+20
$$

units $^{2}$
you can now do:
$W B$
Page 22 and 23 \#18-25 Challenge \#26
Page 40 \# 3-5
Page 42 \# 14, 15

