Lesson 3 Quadratic Formula

Date:

Chapter 3 Quadratic Equations

Lesson 3: Solving Equations: Quadratic Formula

Solving Quadratic Equations:

finding values for x that make the equation true

- 1. Factorization or Zero Product Principle
- 2. Isolate the variable square root b/s
- 3. Quadratic Formula

Quadratic Formula

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Solution, x, to an equation in the form: $ax^2 + bx + c = 0$

 $ex 3x^2 - 7x + 10 = 0$

This is the original equation.	$ax^2 + bx + c = 0$
Move the loose number to the other side.	$ax^2 + bx = -c$
Divide through by whatever is multiplied on the squared term. Take half of the <i>x</i> -term, and square it. Add the squared term to both sides.	$x^{2} + \frac{b}{a}x = -\frac{c}{a}$ $\frac{b}{2a} \rightarrow \frac{b^{2}}{4a^{2}}$ $x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} = -\frac{c}{a} + \frac{b^{2}}{4a^{2}}$
Simplify on the right-hand side; in this case, simplify by converting to a common denominator.	$x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} = -\frac{4ac}{4a^{2}} + \frac{b^{2}}{4a^{2}}$
Convert the left-hand side to square form (and do a bit more simplifying on the right).	$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$
Square-root both sides, remembering to put the "±" on the right.	$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} = \frac{\pm \sqrt{b^2 - 4ac}}{2a}$
Solve for " x =", and simplify as necessary.	$x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

derrivation of QF

example $\sum_{i=1}^{n} (7)^2 - (4)(1)(0)$ $x^2 = -7x$ () $x^2 + 7x = 0$ $\begin{array}{c} = 49 \\ 3 \\ X = -7 \pm \sqrt{49} \\ \hline 200 \\ \end{array}$ a = 1h = 7C = O= $\frac{7+7}{a}$ $\chi_1 = -\frac{7}{2} + \frac{7}{2}$ = 0 = 7 $\chi = \{0, 7\}$ example $-32x = 21 - 5x^2$ 5x2-32x-21=0 $D_{a=5}$ $(-32)^2 - 4(5)(-21)$ = 1624 + 420h = -32= 1444 At ins c = -21(5

example of a quadratic equation in a word problem The value, in cents, of a share is given by $V = 2t^2 - 16t + 40$ where t represents the number of weeks since the share was purchased. a) After how many weeks is the share worth 58 cents? ... find t, when V = 58 b) Will the value of the share ever drop to 6 cents? a) . find t, when V=6 a) $\therefore find \pm, when v = 6$ $2t^2 - 16t + 40 = 58$ $2t^2 - 16t - 18 = 0$ $t^2 - 8t - 9 = 0$ Use Q.F. or Z.P.P. (t - 9)(t + 1) = 0 t - 9 = 0 (t - 9)(t + 1) = 0 t - 9 = 0 t - 9 = 0 t = 9 t = -1weeks cannot be nogative b) $2t^2 - 16t + 40 = 6$ a = 1 $\Delta = (-8)^2 - 4(1)(17)$ $2t^2 - 16t + 34 = 0$ b = -8 = 64 - 68 $t^2 - 8t + 17 = 0$ C = 17 = -4 Δ is neg tt can never drop to 6 cents induction

you can now do;

Worksheets

- Solving Equations Using Quadratic Formula
- Solving Equations Using Quadratic Formula 2

WB Page 34 #11