Lesson 3 Quadratic Formula

Date:

Chapter 3 Quadratic Equations

Lesson 3: Solving Equations: Quadratic Formula

Solving Quadratic Equations:

finding values for x that make the equation true

1. Factorization or Zero Product Principle
2. Isolate the variable square root b / s
3. Quadratic Formula

Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

solution, x, to an equation in the form:

$$
\begin{array}{r}
a x^{2}+b x+c=0 \\
\text { ex } \quad 3 x^{2}-7 x+10=0
\end{array}
$$

derrivation of QF

This is the original equation.	$a x^{2}+b x+c=0$
Move the loose number to the other side.	$a x^{2}+b x=-c$
Divide through by whatever is multiplied on the squared term. Take half of the x-term, and square it. Add the squared term to both sides.	$x^{2}+\frac{b}{a} x=-\frac{c}{a}$
Simplify on the right-hand side: in this case, simplify by converting to a common denominator.	$\frac{b}{2 a} \rightarrow \frac{b^{2}}{4 a^{2}}$
Convert the left-hand side to square form (and do a bit more simplifying on the right).	$x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}=-\frac{c}{a}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}$
Square-root both sides, remembering to put the " \pm " on the right.	$x+\frac{b}{2 a}= \pm \sqrt{\frac{4 a c}{4 a^{2}}+\frac{b^{2}}{4 a^{2}}}$
Solve for " $x="$ ", and simplify as necessary.	$\left.x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}}}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{2 a}=\frac{ \pm a c}{4 a^{2}}$

To use the Quadratic Formula

- quadratic equation in general form $=0$
- there are no brackets on the LHS
- identify "a" "b" and "c"

$$
\begin{array}{lrl}
1 x^{2}+7 x=-12 & x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\begin{array}{rlrl}
1 x^{2}+7 x+12=0 & (2) & \Delta & =b^{2}-4 a c \\
& & =(7)^{2}-(4)(1)(12) \\
& & & =49-48 \\
a=1 & & =1 \\
b=7 & & \text { (3) } & \\
& x=\frac{-7 \pm \sqrt{1}}{2(1)} & =\frac{-7 \pm 1>x_{1}=\frac{-7+1}{2}=-3}{2} b x_{2}=\frac{-7-1}{2}=-4
\end{array}
\end{array}
$$

(1)
discriminant: tells you how many solutions (roots) to a quadratic equation.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
& \Delta=b^{2}-4 a c \\
& \Delta>0 \Rightarrow 2 \text { real roots } \\
& \Delta<0 \Rightarrow \text { no real roots } \\
& \Delta=0 \Rightarrow 1 \text { real root }
\end{aligned}
$$

example

$$
\text { (1) } 3 x^{2}-11 x-4=0
$$

$$
\begin{aligned}
& a=3 \\
& b=-11 \\
& c=-4
\end{aligned}
$$

(2)

$$
\text { (2) }=(-11)^{2}-4(3)(-4)
$$

$$
=\mid 21+48
$$

$$
=169 \underset{\therefore 2}{\Delta t}
$$

$$
x=\frac{-(-11) \pm \sqrt{169}}{2(3)} \text { solutions }
$$

$$
=\frac{11 \pm 13}{6}
$$

$$
x_{1}=\frac{11+13}{6}=\frac{24}{6} \quad x_{2}=\frac{11-13}{6}=\frac{-2}{6}
$$

$$
x=\left\{-\frac{1}{3}, 4\right\}
$$

example

$$
\begin{aligned}
& (1) \\
& a=1 \\
& b=-b \\
& c=9
\end{aligned}
$$

(1) $x^{2}-6 x+9=0$

$$
\begin{aligned}
& =(-6)^{2}-4(1)(9) \\
& =36-36 \\
& =0 \quad \therefore \text { ane }
\end{aligned}
$$ solution

(3)

$$
\begin{aligned}
& x=\frac{-(-6) \pm \sqrt{0}}{2(1)} \\
&=\frac{6}{2}=3 \\
& x=\{3\}
\end{aligned}
$$

example

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
& x^{2}-x+1=0 \\
& a=1 \\
& b=-1 \\
& c=1
\end{aligned}
$$

$$
\begin{aligned}
\Delta & =(-1)^{2}-4(1)(1) \\
& =1-4 \\
& =03 \Delta-
\end{aligned}
$$

No solution

$$
x=\{ \} \text { or } x=\phi
$$

example

$$
\begin{gathered}
2 x^{2}=x^{2}+4 x+37 \\
2 x^{2}-x^{2}-4 x+37 \\
x^{2}-4 x-37=0
\end{gathered}
$$

$$
\Delta^{(2)}=(-4)^{2}-4(1)(-37)
$$

(1) $a=1$

$$
=16+164
$$

$$
b=-4
$$

$c=-37$

$$
=164 \Delta+\therefore \text { io l }
$$

$$
\begin{align*}
& x=\frac{-(-4) \pm \sqrt{164}}{2(1)} \quad x_{1}=\frac{4+\sqrt{164}}{2} \approx 8.403 \tag{3}\\
& \\
& =\frac{4 \pm \sqrt{164}}{2} \quad x_{2}=\frac{4-\sqrt{164}}{2} \approx-4.403 \\
& x
\end{align*}
$$

example

$$
x^{2}=-7 x
$$

(2)
(1) $x^{2}+7 x=0$

$$
a=1
$$

$$
\begin{aligned}
\Delta & =(7)^{2}-(4)(1)(0) \\
& =49 \Delta+
\end{aligned}
$$

(3)
$b=7$

$$
c=0
$$

$$
\begin{aligned}
x_{1}=\frac{-7+7}{2} & \begin{aligned}
x_{2} & =\frac{-7-7}{2} \\
=0 & \\
& =\{0,7\}
\end{aligned} \\
x & =\{0
\end{aligned}
$$

example

$$
\begin{aligned}
& -32 x=21-5 x^{2} \\
& 5 x^{2}-32 x-21=0
\end{aligned}
$$

(1)

$$
b=-32
$$

$$
\text { (2) } \begin{aligned}
\Delta & =(-32)^{2}-4(5)(-21) \\
& =1024+420 \\
& =1444 \Delta t \\
& \text { 2 solutions }
\end{aligned}
$$

$$
c=-21
$$

(3)

$$
\begin{aligned}
x & =\frac{-(-32) \pm \sqrt{1444}}{2(5)} \\
& =\frac{32 \pm 38}{10}
\end{aligned} x_{1}=\frac{70}{10}=7 \quad x=\left\{\frac{-3}{5}, 7\right\}
$$

example of a quadratic equation in a word problem
The value, in cents, of a share is given by $V=2 t^{2}-16 t+40$
where t represents the number of weeks since the share was purchased.
a) After how many weeks is the share worth 58 cents?
\therefore find t, when $V=58$
b) Will the value of the share ever drop to 6 cents?

$$
\begin{aligned}
& \text { a) } \therefore \text { find } t \text {, when } V=6 \\
& 2 t^{2}-16 t+40=58 \\
& 2 t^{2}-16 t-18=0 \\
& t^{2}-8 t-9=0 \\
& \text { use Q.F or Z.P.P. }
\end{aligned}
$$

$\rightarrow(t-9)(t+1)=0$
$t-9=0 \mid t+1=0$

$$
t=9
$$

$t=-1$ weeks cannot be negative
b)

$$
\begin{array}{lll}
2 t^{2}-16 t+40=6 & a=1 & \Delta=(-8)^{2}-4(1)(17) \\
2 t^{2}-16 t+34=0 & b=-8 & =64-68 \\
t^{2}-8 t+17=0 & c=17 & =-4 \quad \Delta \text { is neg } \\
& & =\text { it can never drop to } 6 \text { cents }
\end{array}
$$

workbook page 33
9. Using the sign of the discriminant, indicate the number of solutions to the following equations.

a)

$$
\begin{aligned}
\Delta & =(3)^{2}-4(2)(-2) \\
& =25(2)
\end{aligned}
$$

$$
=49 \text { (2) }
$$

c) $\Delta=(12)^{2}-4(4)(9)$
b) $\Delta=(5)^{2}-4(-2)(3)$

$$
=O \text { (1) }
$$

$$
\text { e) } \begin{aligned}
\Delta & =(6)^{2}-4(1)(0) \\
& =36(2)
\end{aligned}
$$

d)
$\Delta=(1)^{2}-4(-1)(-1)$

$$
=-3 \phi
$$

g) $\Delta=(-3)^{2}-4(1)(2)$
f) $\Delta=(0)^{2}-4(2)(-8)$ $=64$ (2)

$$
=12
$$

h)

$$
\begin{aligned}
& =(2)^{2}-4(-1)(-1) \\
& =0 \text { © }
\end{aligned}
$$

workbook page 34 \#14
The length of a rectangular field measures 5 m more than twice its width. If the total area is
equal to $250 \mathrm{~m}^{2}$, what is the perimeter of the field

$$
2 x+5
$$

(1)
(2)

$$
\begin{aligned}
& (x)(2 x+5)=250 \\
& 2 x^{2}+5 x-250=0
\end{aligned}
$$

$$
\begin{aligned}
\text { Q.F. } & & \Delta=b^{2}-4 a c \\
a=2 & & (3)=(5)^{2}-4(2)(-250) \\
b=5 & & =25+2600 \Delta+2 \text { solutions } \\
c=-250 & & =2025
\end{aligned}
$$

(4)

$$
\begin{aligned}
& x=\frac{-5 \pm \sqrt{2025}}{2(2)} \\
& x=\frac{-5 \pm 45}{4} \longrightarrow x_{1} \longrightarrow \frac{-5+45}{4}=10 \\
& \left.\therefore P=\frac{-5-45}{4}=-12.5\right) \\
& \therefore P=(10+25) \times 2=70 \mathrm{~m} .
\end{aligned}
$$ dimensions cannot be negative

workbook Page 34 \# 17

A mother is presently 5 years older than twice her daughter's age. Ten years ago, the product of the mother and daughter's ages was equal to 125 . What is the mother's present age?

	now	then 16 year
mom	$2 x+5$	$2 x+5-10$
daughter	x	$x-10$
(2)	(3)	

$$
\begin{aligned}
& (1)(2 x-5)(x-10)=125 \\
& 2 x^{2}-20 x-5 x+50=125 \\
& 2 x^{2}-25 x-75=0
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Q.F. } & \Delta=(-25)^{2}-4(2)(-75) \\
a=2 & =1225 \Delta+2 \text { solutions } \\
b=-25 & \text { (4) } x=\frac{(-25) \pm \sqrt{1225}}{2(2)} \\
c=-75 & x_{2}=-2.5 \text { reject a negative } \\
& x_{1}=15 \quad \begin{array}{l}
\text { age is } \\
\text { and }
\end{array}
\end{array}
$$

workbook page 34 \#18
Square and rectangle have equal area. What is
$\frac{x}{x}$ A, $x-2$

$$
\begin{aligned}
& \text { the rectangle? } A_{1}=A_{2} \\
& \begin{array}{ll}
x^{2}=(2 x-3)(x-2) & 2(6)-3=9 \\
x^{2}=2 x^{2}-4 x-3 x+6 & \\
0=x^{2}-7 x+6 & 6-2=4 \\
0=(x-6)(x-1) & P=9+4+9+4 \\
\begin{array}{l|l}
x-6 & =0 \\
x=6 & x-1=0
\end{array} & \therefore P=26 u
\end{array}
\end{aligned}
$$

ZR.
reject as it mil
give a negatue dimension

Worksheets

- Solving Equations Using Quadratic Formula
- Solving Equations Using Quadratic Formula 2

WB Page 34 \#11

