- **5.** Draw one cycle of each of the following functions.
 - a) $y = 2 \sin \frac{\pi}{2}(x-1) 1$

c) $y = 3 \sin 2(x - \frac{\pi}{2}) + 1$

b) $y = -2 \sin \frac{\pi}{3}(x+1) + 1$

d) $y = -3 \sin -2(x - \pi) + \frac{3}{2}$

ACTIVITY $\sqrt{2}$ Finding the zeros of the function $y = a \sin b(x - h) + k$

A portion of the graph of the function

 $f(x) = -2 \sin \frac{\pi}{3}(x-1) + 1$ is represented on the right.

- a) What is the period p of the function? p = 6
- b) 1. How many zeros does the function f have? An infinite number.
 - 2. How many zeros does the function f have when $x \in [1, 7]$? Two zeros.

c) Justify the steps for finding the zeros of f when $x \in [1, 7]$.

1.
$$-2\sin\frac{\pi}{3}(x-1)+1=0$$

We set
$$f(x) = 0$$
.

2.
$$\sin \frac{\pi}{3}(x-1) = \frac{1}{2}$$

We isolate
$$\sin b(x - h)$$
.

- x = 1.5 or x = 3.5 We deduce the solutions for x.
- d) From the zeros of f obtained over [1, 7], explain how to deduce the zeros of f located on the next cycle, i.e. when $x \in [7, 13]$.

You need to add the period to each zero. The zeros over [7, 13] are 7.5 and 9.5.

e) Verify that the set of zeros of f is $\{...; -4.5; -2.5; 1.5; 3.5; 7.5; 9.5; ...\}$ or $\{1.5 + 6n\} \cup \{3.5 + 6n\}, n \in \mathbb{Z}$.