Solving Quadratic Equations and Factoring Expressions

1. The area of the rectangle on the left is $17 \mathrm{~cm}^{2}$ more than the area of the rectangle on the right. What is the perimeter of the smaller rectangle?

2. The area of a rectangular filed is expressed as $A=6 x^{2}+7 x-20$. 7 meters are removed from each side of the field. What are the new binomial dimensions of the rectangle? Is there a way that you can verify that your answer is correct
3. Today Jerry is 4 years older than his sister Gloria. In 7 years, the product of their ages will be 621. How old will Jerry be in 2045? 2035?
4. The area of the shape below is equal to $171 \mathrm{~cm}^{2}$. Determine the perimeter of the figure.

5. A square-shaped piece of metal has an area of $4 x^{2}+28 x+49 \mathrm{~cm}^{2} .2 \mathrm{~cm}$ are added to one side and 5 cm are taken away from the other side. What trinomial could represent the area of this new piece of metal? Can this new area be expressed as a product of factors? If so, do it.
6. The dimensions of a rectangular piece of paper are $(5 x+1) \mathrm{cm}$ by $(13 x-8) \mathrm{cm}$. A small square that measures 6 cm by 6 cm is cut out of the paper. The remaining area of paper is $162 \mathrm{~cm}^{2}$. What are the actual dimensions of the original rectangle (in cm)?
7.

$$
\begin{aligned}
x(x+4) & =(x-1)(x+3)+17 \\
x^{2}+4 x & =x^{2}+2 x-3+17 \\
x^{2}+4 x & =x^{2}+2 x+14 \\
4 x & =2 x+14 \\
2 x & =14 \\
x & =7
\end{aligned}
$$

$$
\begin{aligned}
& =2(6)+2(10) \\
& =12+20 \\
& =32 \mathrm{~cm}
\end{aligned}
$$

2.

$$
\begin{array}{ll}
A=6 x^{2}+7 x-20 & m \times n=-120 \\
A=6 x^{2}+15 x-8 x-20 & m+n=7 \\
15,-8 \\
A=3 x(2 x+5)-4(2 x+5) \\
A=(2 x+5)(3 x-4)
\end{array}
$$

New dimensions:

$$
\begin{aligned}
2 x+5-7 & =2 x-2 \\
3 x-4-7 & =3 x-11
\end{aligned}
$$

$$
\text { Verification: } \begin{aligned}
(2 x-2)(3 x-1) & =6 x^{2}-22 x-6 x+22 \\
& =6 x^{2}-28 x+22
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\begin{array}{|c|c|}
\hline 7(2 x-2) & 2 x-2 \\
\hline 14 x-14 & 3 x-11 \\
\hline 49 & 7(3 x-11)=21 x-77 \\
\hline 7 & 7 \\
\hline
\end{array}}_{3 x-4}+7 \\
& \begin{aligned}
&\left(6 x^{2}+7 x-20\right)-(21 x-77)-(14 x-14)-49 \\
&= 6 x^{2}+7 x-20-21 x+77-14 x+14-49 \\
&
\end{aligned} \\
& =6 x^{2}-28 x+22
\end{aligned}
$$

3.

	Now	Then
Jerry	$x+4$	$x+11$
Gloria	x	$x+7$

$$
\begin{aligned}
& (x+11)(x+7)=621 \\
& x^{2}+18 x+77=621 \\
& x^{2}+18 x=544 \\
& x^{2}+18 x+81=544+81 \\
& 18 \div 2=9
\end{aligned}
$$

using $\quad x^{2}+18 x-544=0$
$2 P P$.

$$
\begin{aligned}
& x+34)(x-16)=0 \\
& x=-34 \quad x=16
\end{aligned}
$$

2014: Jerry: 20
Gloria: 16
2015: Jerry: 21
2035: J: 41

$$
\begin{aligned}
x+9=25
\end{aligned} \text { or } \begin{aligned}
x+9 & =-25 \\
x & =-34
\end{aligned}
$$

G: 37

$$
\begin{aligned}
(x+9)^{2} & =625 \\
x+9 & = \pm 25 \\
x+9 & =25 \\
x & =16
\end{aligned}
$$

$$
x=-34
$$

(1) $+2=171$
4. $2 x(5 x-3)+(7 x-1)(3 x+5)=171$

$$
10 x^{2}-6 x+21 x^{2}+35 x-3 x-5=171
$$

QF be
muser to

$$
\begin{aligned}
31 x^{2}+26 x-5 & =171 \\
31 x^{2}+26 x-176 & =0 \\
31 x^{2}-62 x+88 x-176 & =0
\end{aligned}
$$

easter
use.

$$
\begin{aligned}
31 x(x-2)+88(x-2) & =0 \\
(x-2)(31 x+88) & =0 \\
x-2=0 \text { or } 31 x+88 & =0 \\
31 x & =-88 \\
x & =-83 / 31
\end{aligned}
$$

$$
8 x+2=18
$$

$$
\begin{aligned}
m \times n= & -5456 \\
m+n= & 26 \\
& 88,-62
\end{aligned}
$$

$$
\text { Perimeter }=4+7+9+11+13+18
$$

$7 x-1=13$
5.

$$
\begin{aligned}
& 4 x^{2}+28 x+49 \\
& =(2 x+7)^{2}
\end{aligned}
$$

Side 1: $2 x+7+2=2 x+9$
Side 2: $2 x+7-5=2 x+2$

$$
\text { Area }=(2 x+2)(2 x+9)=4 x^{2}+22 x+18
$$

As a product of factors: $2(x+1)(2 x+9)$
6. Rectangle: Area $=(5 x+1)(13 x-8)$

$$
=65 x^{2}-27 x-8
$$

Square: Area $=6 \times 6=36 \mathrm{~cm}^{2}$
Area remaining:

$$
m \times n=-13390
$$

$$
m+n=-27
$$

$$
+103,-130
$$

$$
\begin{aligned}
& 162=65 x^{2}-27 x-8-36 \\
& 162=65 x^{2}-27 x-44 \\
& 0=65 x^{2}-27 x-206 \\
& 0=65 x^{2}-130 x+103 x-206 \\
& 0=65 x(x-2)+103(x-2) \\
& 0=(x-2)(65 x+103) \\
& x-2=0 \text { or } 65 x+103=0 \\
& x=2 \quad 65 x=-103 \\
& x=-\frac{103}{65}
\end{aligned}
$$

\therefore Original dimensions: $5 x+1=11 \mathrm{~cm}$

$$
13 x-8=18 \mathrm{~cm}
$$

