- **1.** a) The line l on the right passes through A(1, 1) and B(4, 3).
 - 1. What is the sign of the slope of line *l*?_
 - 2. Calculate the slope of line *l*. ____
 - 3. Complete the description of the slope of line *l*: "For each positive variation of 3 units on the x-axis, there is a corresponding <u>positive</u> __ variation of __2 units on the y-axis."

- b) The line l on the right passes through A(1, 4) and B(4, 2).
 - 1. What is the sign of the slope of line *l*?___
 - 2. Calculate the slope of line *l*. _
 - 3. Complete the description of the slope of line *l*: "For each positive variation of 3 units on the x-axis, negative variation of 2 there is a corresponding _ units on the v-axis."

The line l on the right is horizontal (parallel to the x-axis). Using any points A and B of your choice, calculate the slope of line l and verify that it is zero.

$$A(1, 2); B(4, 2); a = \frac{2-2}{4-1} = \frac{0}{3} = 0$$

d) The line l on the right is vertical (parallel to the y-axis). Using any points A and B of your choice, calculate the slope of line l and explain why it is undefined.

A(3, 3); B(3, 1); $a = \frac{1-3}{3-3} = \frac{-2}{0}$. Dividing by zero is impossible;

therefore the slope of line I is undefined.

2. Calculate the slope of the line passing through:

a) (2, 1) and (-3, 5). $\frac{-\frac{4}{5}}{5}$ b) (-3, 1) and (2, -1). $\frac{-\frac{2}{5}}{-\frac{25}{18}}$ c) (-2, -3) and (1, 5). ____ d) (-2, -4) and (-3, -7). $\frac{3}{2}$ e) $\left(\frac{1}{2}, \frac{3}{4}\right)$ and $\left(\frac{4}{5}, \frac{1}{3}\right)$. ____ f) (0.2; -0.8) and (1; 1.4).

What is the slope of each of the following lines

136

