1. a) The line l on the right passes through $A(1,1)$ and $B(4,3)$.
2. What is the sign of the slope of line l ? Positive
3. Calculate the slope of line l.
$\frac{2}{3}$
4. Complete the description of the slope of line l :
"For each positive variation of $\frac{\mathbf{3}}{}$ units on the x-axis, there is a corresponding positive variation of $\mathbf{2}$
 units on the y-axis."
b) The line l on the right passes through $A(1,4)$ and $B(4,2)$.
5. What is the sign of the slope of line l ? Negative
6. Calculate the slope of line l. \qquad $-\frac{2}{3}$
7. Complete the description of the slope of line l :
"For each positive variation of \qquad units on the x-axis, there is a corresponding \qquad negative variation of \qquad 2
 units on the y-axis."
c) The line l on the right is horizontal (parallel to the x-axis). Using any points A and B of your choice, calculate the slope of line l and verify that it is zero.

$$
A(1,2) ; B(4,2) ; a=\frac{2-2}{4-1}=\frac{0}{3}=0
$$

d) The line l on the right is vertical (parallel to the y-axis).

Using any points A and B of your choice, calculate the slope of line l and explain why it is undefined.
$A(3,3) ; B(3,1) ; a=\frac{1-3}{3-3}=\frac{-2}{0}$. Dividing by zero is impossible;
therefore the slope of line l is undefined.

2. Calculate the slope of the line passing through:
a) $(2,1)$ and $(-3,5)$.
$-\frac{4}{5}$
b) $(-3,1)$ and $(2,-1) \cdot \frac{-\frac{2}{5}}{25}$
d) $(-2,-4)$ and $(-3,-7)$. 3
e) $\left(\frac{1}{2}, \frac{3}{4}\right)$ and $\left(\frac{4}{5}, \frac{1}{3}\right) \cdot-\frac{25}{18}$
c) $(-2,-3)$ and $(1,5)$.
$\frac{\frac{8}{3}}{1.4) \cdot \frac{11}{4}}$
3. What is the slope of each of the following lines
a)

$a=-\frac{1}{2}$
b)

$a=\frac{1}{4}$
c)

$a=-\frac{3}{2}$
d)

$a=2$

