Lesson 4 Word Problems
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Chapter 4: Linear and
Quadratic Functions:
\ | Word Problems

Lesson 4

Maximum and Minimum problems
examine situations where it is
desirable to find the maximum or the
minimum of a quadratic function

therefore it is desirable
to find the vertex of
these functions
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Example 4

\ou have a 500-foot roll of fencing and a

large field. ou want to construct a ' -
rectangular playground area. What is the L‘ CA@ Eelbid
largest area that you can construct? o’Z Q| M = 280 vn
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What conjecture could
you make concerning
rectangular enclosures
and maximum area?
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. Example 2

- You have a1200-foot roll of fencing and a

' large field. You want +o make +wo _
 rectangular paddocks by splitting a L-

- rectangular enclosure v half. what are the PO
d:mewsloms of the largest such enclosure?
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Example 3

A model rocket is lannched from the roof of

- abuilding. Tts flight path is described

by h(t)=-5t* +30+ + 10

where h(+) is the height of the rocket above

~ the gromnd in metres and + is the time after the launch
v seconds.

- What is the rocket’s maximum height? when does i+
- oceur?
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Mour factory produces lemon-scented widgets.

You know that the cost to produce each widget (uvit cost)

 becomes less, the more you produce (for a +ime). But you also

 kvow that costs will eventually go up if you make oo many

 Widgets, due +o the costs of storage of the overstock, addivg a
"ight shift", increased insurance, etc.

The employee v accomnting says that your unit cost for producivg
X thousands of uits a day can be approximated by the formula:

C=0.0022125 x* - DA®5 X +12.6

Find the daily prodmcﬂow level +hat will mivimize your unit cost.
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~ completing the square
is messy!
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. Example 5

~ For a summer job, you rum a cavoe-revtal business on a

- small lake i Northern Owtario. You carrently charge $12

- per cavoe avd at that price you attract an average of 26
 customers per day. You have dove some market research
 avd have learved that, for every $1.50 increase v rental

~ price, your business can expect +o lose two rewtals per day.
© Use this information to determine how much you should

~ be charging in order +o maximize your income.
. X
~ try making a chart '"Ufﬂbe
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] Example 6

A water balloov is catapulted into the
air so that its height 4, in metres, after
Fseconds is N(+) = =40t + 27t + 2.4

~ How high is the balloow after 1 second? I~ ) "‘\\
()= -q (142 =[H S| T

wWhat is the max. height reached by the *')——————j\—ﬁ

balloon? wWhew does this occur? e

hB= -4q [+ 55100+  )+ad
=-49 /tza S.5102t +7.6ﬁo?fﬂ +AY+-%57.1939
T4 (£ =755

aftev ab seavels + 18 @ 29844 m]

Chapter 4 Quadratic and Linear Functions Page 5



