Lesson 10 More Word Problems

Date:
Chapter 4: Linear and
Quadratic Functions:
Lesson 10:
More Word
Problems

Find RULE

- Projectile off a balcony.
- Reaches max after 3 seconds
- Lands after 8 seconds

$$
\begin{aligned}
& \underset{\substack{\text { altitude } \\
(\mathrm{m})}}{\text { Height of balcony? }} \\
& 10 \quad f(x)=a(x-h)^{2}+k \\
& 0=a(8-3)^{2}+10 \\
& -10=a(25) \\
& (8,0)-\frac{10}{25}=a \\
& \xrightarrow[\substack{\text { Time } \\
\text { seconds }}]{ } a=-4 \\
& f(x)=-.4(x-3)^{2}+10 \\
& f(0)=-4(0-3)^{2}+10=6.4 \\
& \therefore \text { Balcony is } \\
& 6.4 \mathrm{~m}
\end{aligned}
$$

Darnell tosses an apple straight up in the air to a friend standing on the second floor in the main foyer. The height of the apple in feet after + seconds is:

$$
h(t)=-16 t^{2}+35 t+5
$$

a) If Darnell's friend is 25 feet above the first floor will he be able to catch the apple?
b) If Darnell does not catch it, when will the apple hit the ground?

$$
\begin{aligned}
& h(t)=-16 t^{2}+35 t+5^{a)} \text { Find Vertex } \\
& =-16\left(t^{2}-\frac{35}{16} t\right)+5 \\
& =-16\left(t^{2}-\frac{35 t}{16}+\frac{1225}{1024}-\frac{1225}{1024}\right)+5 \\
& =-16\left(t-\frac{35}{32}\right)^{2}+5+\frac{1225}{64} \\
& =-16\left(t-\frac{35}{32}\right)^{2}+\frac{320}{64}+\frac{1225}{64} \\
& =-16\left(t-\frac{35}{32}\right)^{2}+\frac{1545}{64} \\
& \text { b) Find zero } \\
& -16\left(t-\frac{35}{32}\right)^{2}+\frac{1545}{64}=0 \\
& \left(t-\frac{35}{32}\right)^{2}=\frac{-1545}{64} \cdot \frac{-1}{16} \\
& t-\frac{35}{32}= \pm \sqrt{1.50879} \\
& t= \pm 1.2283+\frac{35}{32} \\
& \begin{array}{l}
t=-0 \\
\text { time }
\end{array}
\end{aligned}
$$

A toy rocket ship is launched from a platform. It flies over a flagpole and lands on the ground on the other side. A graph of the situation, scaled in meters, is shown on the Cartesian plane below. The path of flight of the rocket forms a parabola.

$$
-24=a \cdot 81
$$

To the nearest tenth of a metre, how far from the base of the flagpole does the :ocker land on the ground?

$$
\begin{aligned}
& \text { (2) } f(x)=\frac{-24}{81}(x-12)^{2}+25 \\
& \text { let } f(x)=0 \quad(x-12)^{2}=84.375 \\
& x-12= \pm 9.1856 \\
& x=9.19+12 \quad x=-9.19+12 \\
& \text { wrong vertex }=21.19 \quad=2.81 \\
& \text { side of } \\
& \therefore \quad 12-2.81=9.19 \mathrm{~m}
\end{aligned}
$$

(1) Rule

$$
y=a(x-12)^{2}+25
$$

$$
\frac{-24}{81}=a
$$

The stream of water coming out of a fountain lands on a child's head. The child's
The child wants to move so that the stream of water will land at his feet.
(1) $f(x)=.9$

The trajectory of the stream of water is represented in the following Cartesian plane. The scale of this graph is in metres.

$$
.9=-1(x-2.2)^{2}+2.5
$$

The rule $f(x)=-0.1(x-2.2)^{2}+2.5$ represents the trajectory of the stream of water.

What distance must the child move so that the stream of water will land at his
feet? feet?

$$
\begin{aligned}
& 16=(x-2.2)^{2} \\
& \pm 4=x-2.2 \\
& x_{1}=4+2.2 x_{2}=-4+2.2 \\
& x=6.2 \frac{x=-1.8}{r_{\text {eject }}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) zero } \\
& -.1(x-2.2)^{2}+2.5=0 \\
& (x-2.2)^{2}=25 \\
& x-2.2= \pm 5 \\
& x=5+2.2 \quad x=-5+2.2 \\
& x=7.2 \quad \begin{array}{l}
x_{2}=-2.8
\end{array}
\end{aligned}
$$

he must move
from 6.2 to 7.2
so 1 meter
reject according to diagram

Volleyball "bump" is parabolic
$A+$ what height is the ball received at B ?
RULE

(3) $3+1.5=4.5$
find

$$
f(4.5)=-.32(4.5-2.5)^{2}+3
$$

$$
=1.72
$$

received at 1.72 m
(1) f

$$
\begin{aligned}
& f(x)=a(x-2.5)^{2}+3 \\
& 1=a(0-2.5)^{2}+3 \\
& -2=a(6.25) \\
& -.32=a
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } f(x)=2.92 \\
& f(x)=-.32(x-2.5)^{2}+3 \\
& 2.92=-.32(x-2.5)^{2}+3 \\
& .25=(x-2.5)^{2} \\
& \pm .5=x-2.5 \\
& x_{1}=.5+2.5 \\
& x_{2}=-5+2.5 \\
& =3
\end{aligned}
$$

Pattern is evident. What is function f_{5} ?

Pattern is evident. What is function f_{5} ?

Function f_{1}	The rule of function f_{1} is $f_{1}(x)=-2(x-1)^{2}+18$.
Function f_{2}	The zeros of function f_{2} are -1 and 5. In addition, $f_{2}(0)=10 . \quad\left(0_{7} \quad 10\right)$
Function f_{3}	$f_{3}(1)=10, f_{3}(3)=18$ and $f_{3}(5)=10$.
Function f_{4}	The rule of function f_{4} is $f_{4}(x)=-2 x^{2}+16 x-14$.
Function f_{5}	$?$

- to find pattern \rightarrow all must be in the same form

$$
\begin{aligned}
& f_{2}=a(x+1)(x-5) \\
& 10=a(0+1)(0-5) \\
& \begin{aligned}
10 & =a(-5) \quad \text { vertex } \\
a & =-2 \quad \frac{-1+5}{2}=\frac{4}{2}=2 \\
f(x) & =-2(2+1)(2-5) \\
& =-2(3)(-3) \\
& =18 \\
f_{2} & =-2(x-2)^{2}+18
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& f_{3} \begin{array}{l|l}
x & f(x) \\
+2 & 10 \\
3 & 18-\text { VERTEX } \\
+2(5) & 10
\end{array} \\
& f(x)=a(x-3)^{2}+18 \\
& 10=a(1-3)^{2}+18 \\
& 10-18=a(-2)^{2} \\
& -8=4 a \\
& a=-2
\end{aligned}
$$

$$
f_{3}=-2(x-3)^{2}+18
$$

$$
\begin{aligned}
f_{4} & =-2 x^{2}+16 x-14 \\
& =-2\left(x^{2}-8 x\right)-14 \\
& =-2\left(x^{2}-8 x+16-16\right)-14 \\
& =-2(x-4)^{2}-14+32 \\
f_{4} & =-2(x-4)^{2}+18
\end{aligned}
$$

$$
\begin{aligned}
& f_{1}=-2(x-1)^{2}+18 \\
& f_{2}=-2(x-2)^{2}+18 \\
& f_{3}=-2(x-3)^{2}+18 \\
& f_{4}=-2(x-4)^{2}+18 \\
& f_{5}=-2(x-5)^{2}+18
\end{aligned}
$$

you can now do:
WB
Page 110 and 111 \# 9, 10, 12, 14, 16-18

