GRAPHING A PARABOLA - GENERAL FORM

Procedure

1. Identify the parameters a, b and c.
2. Determine the opening according to the sign of a.
3. Determine the coordinates of the vertex V .
$\mathrm{V}=\left(-\frac{b}{2 a},-\frac{\Delta}{2 a}\right)$ where $\Delta=b^{2}-4 a c$.
4. Find the zeros.
$x_{1}=\frac{-b-\sqrt{\Delta}}{2 a} ; x_{2}=\frac{-b+\sqrt{\Delta}}{2 a}$
5. Find the y-intercept.
6. Complete a table of values.
7. Graph the parabola.

We observe 6 possible situations according to the signs of a and Δ.

	$\Delta>0$	$\Delta=0$	$\Delta<0$
$a>0$			
$a<0$			

Ex.: $f(x)=-x^{2}+4 x-3$

1. $a=-1, b=4, c=-3$
2. Open downward since $a<0$
3. $V(2,1)$.
4. $\Delta=4$. There are 2 zeros: $x_{1}=1$ and $x_{2}=3$.
5. $f(0)=-3$.
6. | x | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| x | -3 | 0 | 1 | 0 | -3 |
7.

2. Graph the following parabolas.
a) $y=x^{2}-6 x+8$
b) $y=-x^{2}+4$

c) $y=x^{2}-2 x+1$

d) $y=2 x^{2}+1$

SIGN OF A QUADRATIC FUNCTION - GRAPHICAL METHOD

To determine the sign of the quadratic function $f(x)=x^{2}+x-6$,

1. we determine the zeros of the function which are then placed on a number line.
2. we draw a sketch of the parabola taking into account its opening which depends on the sign of a.

3. we deduce the sign of the function.
$f(x) \geqslant 0$ if $x \in]-\infty,-3] \cup[2,+\infty[. f(x) \leqslant 0$ if $x \in[-3,2]$.
4. Determine the sign of the following quadratic functions.
a) $f(x)=x^{2}+2 x-15 \quad f(x) \geqslant 0$ if $\left.\left.\boldsymbol{x} \in\right]-\infty,-5\right] \cup[3,+\infty[; f(x) \leqslant 0$, if $\boldsymbol{x} \in[-5,3]$
b) $f(x)=-2 x^{2}+7 x-6$
$f(x) \geqslant 0$ if $x \in\left[\frac{3}{2}, 2\right] ; f(x) \leqslant 0$ if $\left.\left.x \in\right]-\infty, \frac{3}{2}\right] \cup[2,+\infty[$
c) $f(x)=x^{2}-2 x+1 \quad f(x) \geqslant 0, \forall x \in \mathbb{R}$
d) $f(x)=-4 x^{2}+4 x-1 \quad f(x) \leqslant \mathbf{0}, \forall \boldsymbol{x} \in \mathbb{R}$
5. Determine the domain and range of the following functions.
a) $f(x)=-x^{2}+4 x+5$
$\operatorname{Dom} f=\mathbb{R} ; \operatorname{ran} f=]-\infty, 9]$
b) $f(x)=x^{2}+2 x-15$

$$
\operatorname{Dom} f=\mathbb{R} ; \operatorname{ran} f=[-16,+\infty[
$$

6. Study the variation of the following functions.
a) $f(x)=x^{2}-x-6 \quad f \geqslant$ if $\left.\left.\boldsymbol{x} \in\right]-\infty, \frac{1}{2}\right]$ and $\boldsymbol{f} \backslash$ if $\boldsymbol{x} \in\left[\frac{1}{2},+\infty[\right.$
b) $f(x)=-2 x^{2}+3 x-1$

$$
\left.f त \text { if } x \in]-\infty, \frac{3}{4}\right] \text { and } f \searrow \text { if } x \in\left[\frac{3}{4},+\infty[\right.
$$

7. What are the zeros of the function $y=-3 x^{2}+11 x-6$? $\frac{2}{3}$ and 3
8. Find the values of x for which $f(x)=x^{2}+5 x-14$ is positive. $\left.]-\infty,-7\right] \cup[2,+\infty[$
9. What is the range of the function $f(x)=-x^{2}+2 x+15$? $\left.\operatorname{Ran} f=1-\infty, 16\right]$
10. What is the y-intercept of $y=3 x^{2}-2 x+5$?
11. Find the extrema and its nature (maximum or minimum) for $y=-x^{2}-2 x+3$.

A maximum; 4
12. What is the equation of the axis of symmetry for the parabola $y=-2 x^{2}+5 x-3$?

The line with equation $x=\frac{5}{4}$
13. For what values of x is the function $f(x)=2 x^{2}-x-6$ decreasing?

$$
\left.x \in]-\infty, \frac{1}{4}\right]
$$

ACTJVITY] Quadratic function - Factored form

Consider the quadratic function $f(x)=2 x^{2}-7 x+3$.
a) What is the value of parameter a ? $a=2$
b) Determine the zeros x_{1} and x_{2} of the function. $x_{1}=\frac{1}{2}$ and $x_{2}=\mathbf{3}$
c) The factored form of the quadratic function is $f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)$.

Determine the factored form of $f(x)=2 x^{2}-7 x+3 . \quad f(x)=2\left(x-\frac{1}{2}\right)(x-3)$
d) Expand the factored form to get back to the general form.

$$
2\left(x-\frac{1}{2}\right)(x-3)=(2 x-1)(x-3)=2 x^{2}-7 x+3
$$

QUADRATIC FUNCTION - FACTORED FORM

- Given the general form of a quadratic function $f(x)=a x^{2}+b x+c$ with zeros x_{1} and x_{2}. The factored form of the quadratic function is:

$$
f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

Ex.: $-f(x)=-2 x^{2}+5 x-3$ yields the zeros: $x_{1}=\frac{3}{2}$ and $x_{2}=1$.
The factored form of f is $f(x)=-2\left(x-\frac{3}{2}\right)(x-1)$.
$-f(x)=4 x^{2}-12 x+9$ yields only one zero or two equal zeros: $x_{1}=x_{2}=\frac{3}{2}$.
The factored form of f is $f(x)=4\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)=4\left(x-\frac{3}{2}\right)^{2}$.

1. In each of the following cases, determine the factored form of the function.
a) $f(x)=3 x^{2}-5 x-2 \quad f(x)=3\left(x+\frac{1}{3}\right)(x-2)$
b) $f(x)=2 x^{2}+7 x+6 \quad f(x)=2\left(x+\frac{3}{2}\right)(x+2)$
c) $f(x)=x^{2}-8 x+15 \quad f(x)=(x-3)(x-5)$
d) $f(x)=-2 x^{2}+x+3 \quad f(x)=-2\left(x-\frac{3}{2}\right)(x+1)$
e) $f(x)=4 x^{2}-4 x+1$ $f(x)=4\left(x-\frac{1}{2}\right)^{2}$
2. Consider the three forms of a quadratic function: $f(x)=a(x-h)^{2}+k$ (standard form). $f(x)=a x^{2}+b x+c$, (general form) and $f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ (factored form).
For each given form, determine the two other forms.
a) $f(x)=2(x-1)^{2}-8$

$f(x)=2 x^{2}-4 x-6$	(general form)
$f(x)=2(x+1)(x-3)$	(factored form)

c) $f(x)=4 x^{2}-8 x+3$
$f(x)=4(x-1)^{2}-1 \quad$ (standard form) $f(x)=4\left(x-\frac{3}{2}\right)\left(x-\frac{1}{2}\right)$ (factored form)
b) $f(x)=x^{2}-10 x+16$

$f(x)=(x-5)^{2}-9$	(standard form)
$f(x)=(x-2)(x-8)$	(factored form)

d) $f(x)=2(x-1)(x-5)$
$f(x)=2 x^{2}-12 x+10 \quad$ (general form)
$f(x)=2(x-3)^{2}-8 \quad$ (standard form)

The parabola on the right has two zeros: -1 and 2 and passes through the point $\mathrm{P}(3,2)$.
The quadratic function represented by this parabola has the rule: $y=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ (factored form).
Use the following procedure to determine the factored form of the rule.

1. Identify x_{1} and $x_{2} . \boldsymbol{x}_{1}=\mathbf{- 1}$ and $\boldsymbol{x}_{2}=\mathbf{2}$

2. Determine a knowing the coordinates of the point $(3,2)$ verify the rule.

We have: \quad| y | $=a(x+1)(x-2)$ |
| ---: | :--- |
| 2 | $=a(3+1)(3-2)$ |
| 2 | $=4 a$ |
| a | $=\frac{1}{2}$ |

3. What is therefore the factored form of the rule? $y=\frac{1}{2}(x+1)(x-2)$
4. What is the general form?

$$
y=\frac{1}{2} x^{2}-\frac{1}{2} x-1
$$

FINDING THE RULE - GIVEN THE ZEROS AND A POINT

$$
y=a\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

1. Identify the zeros x_{1} and x_{2}.
2. Determine a after replacing x and y in the rule by the coordinates of the point P.
3. Deduce the rule of the function.
4. $x_{1}=1 ; x_{2}=3$
$y=a(x-1)(x-3)$
5. $-6=a(4-1)(4-3)$
$-6=3 a$
$a=-2$
6. $y=-2(x-1)(x-3)$ (factored form) $y=-2 x^{2}+8 x-6$ (general form)

7. Find the rule, in general form, of each of the following quadratic functions.
a) A function with -5 and 2 as zeros and passing through the point $\mathrm{P}(3,16)$. $y=2 x^{2}+6 x-20$
b) A function with -3 and -1 as zeros and an initial value of -6 .

$$
y=-2 x^{2}-8 x-6
$$

c) A function with the unique zero -2 and passing through the point $\mathrm{P}(-1,3)$. $y=3 x^{2}+12 x+12$
d) A function with the vertex $V(-1,4)$ and passing through the point $\mathrm{P}(2,-5)$.

$$
y=-x^{2}-2 x+3
$$

e) A function with the vertex $(1,-8)$ and one of the zeros equal to 3 .

$$
y=2 x^{2}-4 x-6
$$

4. What is the vertex of the parabola that has -2 and 4 for zeros and passes through the point $\mathrm{A}(5,21)$?
$y=3(x+2)(x-4) ; V(1,-27)$
5. A parabola with zeros -1 and 3 passes through the point $\mathrm{A}(2,6)$. What is the y-coordinate of the point B on the parabola that has an x-coordinate of 4 ?
$y=-2(x+1)(x-3) ; B(4,-10)$. The y-coordinate of point B is -10 .
6. A parabola with zeros -3 and 4 passes through the point $\mathrm{A}(2,-20)$. What are the points on this parabola that have a y-coordinate equal to 16 ?
$y=2(x+3)(x-4) ; P_{1}(-4,16)$ and $P_{2}(5,16)$
7. What is the y-intercept of the parabola with zeros -3 and -1 and passing through the point $\mathrm{A}(-2,2)$?
The y-intercept is equal to $\mathbf{- 6}$.
8. What is the equation of the axis of symmetry of a parabola with zeros -3 and 4 ? $x=\frac{1}{2}$
9. The table of values on the right gives the coordinates of different points on a parabola. What is the equation of this parabola?
Axis of symmetry: $x=2$; The zeros are -1 and 5 .
$y=-(x+1)(x-5) ; y=-x^{2}+4 x+5$

x	y
0	5
1	8
3	8
5	0

10. Determine the range of the quadratic function f with zeros 3 and 5 which verifies $f(2)=-6$. $\left.f(x)=-2 x^{2}+16 x-30 ; V(4,2) ; \operatorname{ran} f=J-\infty, 2\right]$
11. What is the rule of the function f that has a range of $]-\infty, 4]$ and is positive over the interval $[-1,3] ? f(x)=-x^{2}+2 x+3$
12. The value of a share, in dollars, x weeks after its purchase is given by the rule $y=-0.1 x^{2}+x+4.5$. Do you make a profit or a loss if the share is sold two weeks after reaching its maximum value?
Value at purchase: $\$ 4.50 ; V(5,7) ; f(7)=\$ 6.60$. A profit of $\$ 2.10$ per share is made.
13. The position $f(t)$, in metres, of a diver relative to the surface is described by the rule $f(t)=0.5 t^{2}-6 t+10$ where t represents elapsed time, in seconds. How long was the diver under water?
$f(t) \leqslant 0 \Leftrightarrow 2 \leqslant t \leqslant 10$. The diver was under water during 8 seconds.
14. The trajectory of a stone thrown from a seaside cliff is a partial parabola. The position $f(t)$, in metres, of the stone relative to sea level is given by $f(t)=-t^{2}+8 t+20$ where t represents elapsed time in seconds since it was thrown. How many seconds after reaching its maximum height will the stone hit the water?
After 6 seconds.
15. The manager of a movie theatre has calculated the following results. When the cost of admission is set at $\$ 10$, he observes on average 100 spectators per showing and for each $\$ 0.50$ rebate on the admission price, he notices an average of 10 more spectators.
a) Find the rule which gives the total revenue per showing as a function of the number x of $\$ 0.50$ rebates.
$R(x)$: Total revenue per showing.
$R(x)=(10-0.5 x)(100+10 x) ; R(x)=-5 x^{2}+50 x+1000$
b) 1. At what amount should the manager set the cost of admission in order to maximize the revenue per showing?
The function R reaches its maximum when $x=5$. The price of admission should be set at $\$ 7.50$.
16. What is the total maximum revenue per showing?
\$1125
17. A stone is thrown upward from a height of 4 m . After 3 s , it reaches its maximum height and after 8 s , it hits the ground. Its trajectory is parabolic.
18. What is the maximum height reached by the stone? 6.25 m
19. Determine the elapsed time from the moment the stone was at a height of 2.25 m during its descent to the moment it hit the ground.

20. The trajectory of a ball thrown by David is a partial parabola. The height $h(t)$, in metres, reached by the ball is described by the rule $h(t)=-(t-3)^{2}+9$.
Determine over what interval of time the ball is at a height greater than or equal to 8 m above ground.
[2,4]
21. A share purchased for $\$ 4$ reaches its maximum value of $\$ 4.50$ five weeks after its purchase. The function associating the value $v(t)$, in dollars, of the share as a function of time t, in weeks, has been shown to be a quadratic function. What is the value of the share 8 weeks after its purchase?
$v(t)=-0.02(t-5)^{2}+4.50 ; v(8)=4.32$
The share is worth $\$ 4.32$ eight weeks after its purchase.
22. The number of units $q(x)$ produced per day by x employees is given by the rule $q(x)=-0.25 x^{2}+10 x(x \leqslant 25)$.
a) What is the maximum number of units produced in one day? How many employees are required to produce this maximum?
100 units produced by 20 employees.
b) How many employees are required to produce 75 units? 10 employees
23. A truck with a height of 190 cm enters a tunnel with a parabolic ceiling. The width of the tunnel is 20 m and the maximum height of the tunnel is 10 m . At what minimal distance from the edge at ground level can this truck pass through the tunnel? $\mathbf{1 m}$
24. The rule $p=1000-2 q$ enables you to calculate the selling price p of a parasol as a function of the number q of parasols ordered. What must the number of parasols ordered be to maximize the revenue generated by the sale of the parasols? 250 parasols
25. A stone is thrown vertically upward. The function which gives the height $h(t)$, in metres, as a function of elapsed time t, in seconds, since the stone was thrown is a quadratic function with the rule: $h(t)=-2 t^{2}+12 t$.
a) 1. What is the maximum height reached by the stone? $\mathbf{1 8} \mathbf{~ m}$
26. At what time does the stone reach its maximum height? 3 seconds
b) At what time, during its descent, does the stone reach a height of 16 m ? 4 seconds after it was thrown.
27. A rectangular yard is to be fenced in with 80 m of fence. What must the dimensions of the yard be in order to maximize the area of the field?
x : width of the yard; $40-x$: length of the yard
$A(x)$: area of the yard. $A(x)=-x^{2}+40 x$
The vertex of the parabola representing $A(x)$ has the coordinates $V(20,400)$.
The yard must be in the shape of a square with 20 m sides.
28. Nancy throws a ball toward a basket located 3.2 m off the ground. The ball's trajectory is represented on the right.
The rule associated with this trajectory is: $y=-0.4(x-6)^{2}+3.6$. Nancy throws the ball at a distance of 3 m from the basket. From what height did Nancy throw the ball?

$$
y_{B}=3.20 ; x_{B}=7 ; x_{N}=4 ; y_{N}=2
$$

The ball is thrown from a height of 2 m .

17. During a tennis match, Karen hits the ball to Alex. The trajectory of the ball is represented in the Cartesian plane by a parabola with its vertex over the net. The equation of the trajectory is: $f(x)=-0.1(x-3)^{2}+1.2$.
The ball is hit by Karen at a height of 0.3 m and reaches Alex at a height of 0.8 m on its descent. How far is Alex from the net if the vertex of the ball's
 trajectory is directly over the net?
$x_{A}=5 ; x_{V}=3 ; x_{A}-x_{V}=2$. Alex is located $2 m$ from the net.
18. A kangaroo makes two consecutive jumps. The trajectory is represented by two portions of parabolas associated with the functions f and g.
The rule associated with the second jump is $g(x)=-0.25(x-6.4)^{2}+2.56$. What is the rule associated with the first jump if the kangaroo jumped twice as high on the
 first jump as the second jump? (The variables x and y are expressed in metres.) The zeros of g are 3.2 and 9.6.
Vertex of the 1st parabola: $V(1.6,5.12) ; f(x)=-2(x-1.6)^{2}+5.12$.

