Name: \qquad

Group : \qquad

Date : \qquad

568536 - Mathematics
Question Booklet

Jonathan works at a golf club during his summer vacation. He sometimes cleans the premises and sometimes works in the kitchen at the club's restaurant.

Jonathan makes $\$ 8$ per hour when cleaning the premises and $\$ 9.50$ per hour when working in the kitchen.
There are certain constraints on the number of hours he can devote to each job every week. This situation is represented by the system of inequalities and the polygon of constraints given below.

$$
\begin{gathered}
x \geq 0 \\
y \geq 0 \\
x+y \leq 40 \\
x \geq 16 \\
y \leq 20
\end{gathered}
$$

x : the number of hours spent cleaning the premises
y : the number of hours spent working in the kitchen

Coordinates of the vertices of the polygon
$P(16,0)$
$Q(16,20)$
$R(20,20)$
$S(40,0)$

This week, Jonathan's employer informed him that there would be an additional constraint. This new constraint is represented by the following inequality: $x \geq y+20$

With this new constraint, by how much will Jonathan's maximum possible income decrease?

To raise money, the Graduation Committee decides to sell cases of fruit. The following polygon represents the constraints that must be respected.

If x represents the number of cases of oranges for sale and y, the number of cases of grapefruit for sale, the constraints are:

For each case of oranges and grapefruit sold, the Graduation Committee makes a profit of $\$ 1.00$ and $\$ 1.50$, respectively.

Yesterday, the head of the committee received a call from the supplier. Because of a recent flood, the supplier can deliver a maximum of 400 cases of fruit.

By how much will the maximum possible revenue decrease because of the flood?

3
$I_{1} \quad x \geq 0$
$I_{2} \quad y \geq 0$
$I_{3} \quad ?$
$I_{4} \quad x+y \leq 40$

I $\quad x+y \geq 20$
$I_{6} \quad y \geq \frac{x}{2}$

I_{3} forms a right angle with I_{4}.

Which of the following is the missing in equality $\left(I_{3}\right)$?
A) $x+y \leq 30$
B) $x+y \geq 30$
C) $y-x \geq 30$
D) $y-x \leq 30$

The city council of a town wants to minimize the cost of staffing its recreation centres in the summer months. The council has determined that supervisors will be paid $\$ 3500$ for the summer and staff workers will be paid $\$ 1500$ for the summer.

The council wants to hire its employees using the following constraints:

- The maximum number of employees for its centres is 30 and the minimum is 18 .
- The council also wants to hire at least 6 supervisors but no more than 14 supervisors.
- It wants to hire at least 8 staff workers.
- The number of staff workers must be at most twice the number of supervisors.

How many staff workers and how many supervisors can the town council hire and minimize its costs?

80 bikes each week. To meet certain conditions in its workshop, it must build at least 45 mountain bikes, and at least 10 road bikes weekly. To meet consumer demand, it must manufacture at least 3 times as many mountain bikes as road bikes.

The following is the system of constraints for Wheeler's weekly bike production:
$x=$ the number of road bikes produced weekly
$y=$ the number of mountain bikes produced weekly

$$
\begin{aligned}
& x \geq 0 \\
& y \geq 0 \\
& x \geq 10 \\
& y \geq 45 \\
& x+y \leq 80 \\
& y \geq 3 x
\end{aligned}
$$

For each road bike and mountain bike produced, Wheeler earns a profit of $\$ 250$ and $\$ 175$, respectively. What is the maximum weekly profit that can be earned?

A fisherman has to separate his daily catch of shellfish into two categories before he can sell them. Lobsters are sold for $\$ 8.70$ each and crabs are sold for $\$ 9.60$ each.

On an average day, the fisherman can expect to catch a minimum of 35 crabs and a maximum of 60 . By experience, there are at most twice as many lobsters as crabs in a daily catch and never has the fisherman caught more than 140 shellfish in a single day.

Using a polygon of constraints, determine the maximum revenue that this fisherman can expect to mak

Instruments Quebecois makes two types of graphing calculators, the Gold Edition and the Bronze Edition. In order to meet daily demands, it must make at least 200 Gold Editions and at least 100 Bronze Editions.

The factory produces at least twice as many Gold Editions as Bronze Editions, but can make no more than 600 calculators a day.

Given x : number of Gold Editions
y : number of Bronze Editions
Constraints:
$x \geq 0$
$y \geq 0$
$x \geq 200$
$y \geq 100$
$x \geq 2 y$
$x+y \leq 600$

The profit on a Gold Edition is $\$ 20.00$ and $\$ 15.00$ on a Bronze Edition.
In the answer booklet, graph the polygon of constraints and determine the number of calculators that the company should make to maximize its profit.

The Grad Committee plans to sell chocolate bars to raise money for its upcoming dance. This year the committee members have decided to sell two types, one with roasted almonds and the other with caramel. They have a maximum of 500 bars to sell. They expect to sell a minimum of 120 almond chocolate bars. From past experience, almond chocolate bars sell at most 4 times as well as caramel ones. They make a profit of $\$ 0.80$ for each almond chocolate bar and $\$ 1$ for each caramel chocolate bar.

Let $\quad x$: number of almond chocolate bars y : number of caramel chocolate bars
What is the difference in the maximum profit if they had expected to sell a minimum of 160 almond chocolate bars rather than 120 ?

Murray plans a trip to New York in July. In order to save money, he works at two different part-time jobs on weekends. At the first job, he works a minimum of 10 hours per month and at the second, a maximum of 40 hours per month. Murray must work at least 30 hours per month but no more than 60 hours per month. He must work at least as many hours at the second job as he does at the first. He makes $\$ 6.30$ an hour at the first job and \$8 an hour at the second job.

Let $\quad x$: number of hours per month at first job
y : number of hours per month at second job

The initial constraints for this situation are:

$$
\begin{aligned}
x & \geq 10 \\
y & \leq 40 \\
y & \geq 0 \\
x+y & \geq 30 \\
x+y & \leq 60 \\
y & \geq x
\end{aligned}
$$

Because of a shortage of employees, Murray was later advised that he could increase the number of hours he worked at the second job.

By how much did Murray's maximum possible salary increase because of the employee shortage?.

Kim is organizing a fundraiser for her soccer team. She will sell hot dogs and hamburgers outside a popular grocery store. She needs to purchase enough supplies to be able to make the following:

- at most 800 hot dogs and hamburgers
- at least 150 hot dogs
- a minimum of 100 but not more than 400 hamburgers
- at most twice as many hamburgers as hot dogs

Her cost is $\$ 0.45$ per hot dog and $\$ 0.75$ per hamburger. She will sell the hot dogs at $\$ 1$ each and hamburgers at \$1.50 each.

Let $\quad x$: the number of hot dogs
y : the number of hamburgers
Given her constraints, how many hot dogs and hamburgers does Kim need to sell to make the greatest profit possible?

Optimization

Example of an appropriate method

Maximum possible income before the new constraint

Vertex	Income: $8 x+9.50 y$
$P(16,0)$	$8(16)+9.50(0)=\$ 128$
$Q(16,20)$	$8(16)+9.50(20)=\$ 318$
$R(20,20)$	$8(20)+9.50(20)=\$ 350 \leftarrow$ maximum income
$S(40,0)$	$8(40)+9.50(0)=\$ 320$

Vertices of the new polygon of constraints

Maximum possible income with the new constraint

Vertex	Income: $8 x+9.50 y$
$(20,0)$	$8(20)+9.50(0)=\$ 160$
$(30,10)$	$8(30)+9.50(10)=\$ 335 \leftarrow$ maximum income
$S(40,0)$	$8(40)+9.50(0)=\$ 320$

Difference between the two maximum possible incomes

$$
\$ 350-\$ 335=\$ 15
$$

Answer: With this new constraint, Jonathan's maximum possible income will decrease by \$15.

Note: \quad Students who used an appropriate method in order to determine the maximum possible income before or with the new constraint have shown that they have a partial understanding of the problem.

Calculation of revenue before the new constraint is considered

Vertices	$R(x, y)=1.00 x+1.50 y$
$A(100,50)$	$100+75=\$ 175$
$B(450,50)$	$450+75=\$ 525$
$C(250,250)$	$250+375=\$ 625$
$D(100,100)$	$100+150=\$ 250$

$$
\text { Maximum Revenue } \Rightarrow \$ 625
$$

250 cases of grapefruit

Calculation of revenue after consideration of the constraint $x+y \leq 400$

Vertices	$R(x, y)=1.00 x+1.50 y$
$\mathrm{~A}(100,50)$	$\$ 175$
$\mathrm{D}(100,100)$	$\$ 250$
$\mathrm{E}(200,200)$	$\$ 500$
$\mathrm{~F}(350,50)$	$\$ 425$

$$
\begin{array}{ll}
\text { Maximum Revenue } \Rightarrow 500 \$ & 200 \text { cases of oranges } \\
200 \text { cases of grapefruit }
\end{array}
$$

Decrease of revenue because of the flood
$625-500=125$

Answer: The decrease in revenue caused by the flood is $\mathbf{\$ 1 2 5}$.

Example of an appropriate solution
x : number of supervisors y : number of staff workers

Constraints: $\quad x \geq 0, y \geq 0$
$x+y \leq 30$
$x+y \geq 18$
$x \geq 6$
$x \leq 14$
$y \geq 8$
$y \leq 2 x$

Vertices of polygon of constraints:
$(10,8) \Rightarrow 10(3500)+8(1500)=\quad \$ 47000$
$(6,12) \Rightarrow 6(3500)+12(1500)=\$ 39000$
$(10,20) \Rightarrow 10(3500)+20(1500)=\quad \$ 65000$
$(14,16) \Rightarrow 14(3500)+16(1500)=\quad \$ 73000$
$(14,8) \Rightarrow 14(3500)+8(1500)=\$ 61000$

The minimum cost is $\$ 39000$.

Answer The town should hire 6 supervisors and 12 staff workers in order to minimize its costs.

Example of an appropriate method

$$
\begin{aligned}
& x=\text { number of road bikes } \\
& y=\text { number of mountain bikes } \\
& x \geq 0 \\
& y \geq 0 \\
& x \geq 10 \\
& y \geq 45 \\
& x+y \leq 80 \\
& y \geq 3 x
\end{aligned}
$$

Objective Function

Max. Profit $=250 x+175 y$
4. $(10,70)$
$250(10)+175(70)$

Answer The maximum weekly profit is \$15 500.

Let $\quad x$: number of lobsters y : number of crabs

Constraints:

$$
\begin{aligned}
x & \geq 0 \quad y \geq 0 \\
y & \geq 35 \\
y & \leq 60 \\
x & \leq 2 y \\
x+y & \leq 140
\end{aligned}
$$

Objective Function: $\mathrm{R}=8.70 x+9.60 y$

Graph:

Vertex	$R=8.70 x+9.60 y$
$A(80,60)$	$1272 \leftarrow \max$
$B(93 . \overline{3}, 46 . \overline{6})$	1259
$C(70,35)$	945
$D(0,35)$	336
$E(0,60)$	576

Answer: The maximum revenue this fisherman can expect to make is $\boldsymbol{\$ 1 2 7 2}$.

Note: Do not penalize students who did not include the non-negative constraints.
Students who determined the constraints and graphed the polygon have shown a partial understanding of the problem.

Maximum possible profit

Vertex	Profit $=20 x+15 y$
$A(200,100)$	$20(200)+15(100)=\$ 5500$
$B(400,200)$	$20(400)+15(200)=\$ 11000$
$C(500,100)$	$20(500)+15(100)=\$ 11500$

Answer: Instruments Quebecois should produce $\mathbf{5 0 0}$ Gold Editions and $\mathbf{1 0 0}$ Bronze Editions to maximize profit.
x : number of almond chocolate bars
y : number of caramel chocolate bars

Constraints

$$
\begin{aligned}
x+y & \leq 500 \\
x & \leq 4 y \\
x & \geq 120
\end{aligned}
$$

Profit

$$
P=0.8 x+y
$$

Point	Profit
$A^{\prime}(160,340)$	$\$ 468$
$B^{\prime}(160,40)$	$\$ 168$
$C^{\prime}(400,100)$	$\$ 420$

Difference in profit

$$
\$ 476-\$ 468=\$ 8
$$

Answer: The difference in the maximum profit is $\mathbf{\$ 8}$.

Note: Students who use an appropriate method in order to determine the constraints, graph the polygon and find the original corner points have shown they have a partial understanding of the problem.
x : number of hours at first job per month y : number of hours at second job per month

Constraints before

$$
\begin{aligned}
x & \geq 10 \\
y & \leq 40 \\
y & \geq 0 \\
x+y & \geq 30 \\
x+y & \leq 60 \\
y & \geq x
\end{aligned}
$$

Constraints after

$$
\begin{aligned}
x & \geq 10 \\
y & \geq 0 \\
x+y & \geq 30 \\
x+y & \leq 60 \\
y & \geq x
\end{aligned}
$$

Maximum Before

Vertices	$S=6.3 x+8 y(\$)$
$A(10,40)$	383
$B(10,20)$	223
$C(15,15)$	214.50
$D(30,30)$	429
$E(20,40)$	446

Maximum After

Vertices	$S=6.3 x+8 y(\$)$
$\mathrm{B}(10,20)$	223
$\mathrm{C}(15,15)$	214.50
$\mathrm{D}(30,30)$	429
$\mathrm{~F}(10,50)$	463

Difference in maximum salary
$\$ 463-\$ 446=\$ 17$

Answer: Murray's maximum possible salary increased by $\$ 17$

Note: Students who use an appropriate method in order to determine the constraints, graph the original polygon, and find its vertices have shown they have a partial understanding of the problem.

Example of an appropriate solution
x : number of hot dogs
y : number of hamburgers

Constraints

$$
\begin{aligned}
x+y & \leq 800 \\
x & \geq 150 \\
y & \geq 100 \\
y & \leq 400 \\
y & \leq 2 x
\end{aligned}
$$

Number of hamburgers

Points	$P=0.55 x+0.75 y$
$(150,100)$	157.5

$(150,300)$	307.5
$(200,400)$	410
$(400,400)$	520
$(700,100)$	460

Answer: Kim needs to sell $\mathbf{4 0 0}$ hot dogs and $\mathbf{4 0 0}$ hamburgers to make the greatest profit.

Note: Students who have found the constraints have shown they have a partial understanding of the problem.

