d) Find the zeros of the following quadratic functions.

1. 
$$f(x) = 2\left(x - \frac{1}{2}\right)^2 - 8$$

$$-\frac{3}{2}$$
 and  $\frac{5}{2}$ 

2. 
$$f(x) = 2(x-1)^2 - 10$$

$$1 - \sqrt{5}$$
 and  $1 + \sqrt{5}$ 

3. 
$$f(x) = -2(x+3)^2$$

4. 
$$f(x) = 3(x-1)^2 + 6$$

no zeros

## FINDING THE ZEROS — STANDARD FORM

The number of zeros of the quadratic function  $f(x) = a(x - h)^2 + k$  depends on the sign of  $-\frac{k}{a}$ 

•  $-\frac{k}{a} > 0$ : There are two zeros  $x_1$  and  $x_2$ .

$$x_1 = h - \sqrt{-\frac{k}{a}}$$
 and  $x_2 = h + \sqrt{-\frac{k}{a}}$ 

 $-\frac{k}{a}=0$ : There is only one zero or the two zeros  $x_1$  and  $x_2$  are equal

$$x_1 = x_2 = h$$

•  $-\frac{k}{a}$  < 0: There are no zeros.

 Note that the function has no zeros when a and k have the same sign.

Ex.:  $f(x) = 2(x-1)^2 - 8$ a = 2; h = 1; k = -8;  $-\frac{k}{3} = 4$  $x_1 = 1 - \sqrt{4} = -1$  and  $x_2 = 1 + \sqrt{4} = 3$ The zeros are -1 and 3.

Ex.:  $f(x) = 2(x - 1)^2$  $a = 2; h = 1; k = 0; \frac{-k}{a} = 0$   $x_1 = x_2 = 1$ The only zero is 1.

Ex.:  $f(x) = 2(x-1)^2 + 8$ a = 2; h = 1; k = 8;  $-\frac{k}{} = -4$ There is no zero since  $-\frac{k}{a} < 0$ .

Find the zeros of the following functions.

a) 
$$f(x) = -4(x+2)^2 + 16 \frac{-4 \text{ and } 0}{2}$$

b) 
$$f(x) = \frac{1}{2}(x+3)^2 - 2$$
 -5 and -1

a) 
$$f(x) = -4(x+2)^2 + 16 \frac{-4 \text{ and } 0}{-3 \cdot 23}$$
 b)  $f(x) = \frac{1}{2}(x+3)^2 - 2 \frac{-5 \text{ and } -1}{-1 \cdot 45}$  c)  $f(x) = 2(x+1)^2 - 10 \frac{-1 \cdot 45 \text{ and } -1 \cdot 45}{-1 \cdot 45}$  d)  $f(x) = (x-1)^2 - 7 \frac{1 \cdot 47 \text{ and } 1 \cdot 47}{-1 \cdot 45}$ 

$$f(x) = (x-1)^2 - 7$$
 1 -  $\sqrt{7}$  and 1 +  $\sqrt{7}$ 

e) 
$$f(x) = -2(x+3)^2$$
 \_\_\_\_\_

f) 
$$f(x) = 3(x-2)^2 - 27$$
 -1 and 5

g) 
$$f(x) = 3(x-1)^2 + 6$$
 none

h) 
$$f(x) = -(x+1)^2$$
 \_\_\_\_\_

**4.** Consider the quadratic function  $f(x) = a(x - h)^2 + k$ .

a) If 
$$a > 0$$
, indicate the number of zeros when

1. 
$$k > 0$$
. none

94

2. 
$$k = 0$$
. only one

2. 
$$k=0$$
 only one 3.  $k<0$  two zeros

b) If 
$$a < 0$$
, indicate the number of zeros when

1. 
$$k > 0$$
. two zeros 2.  $k = 0$ . only one

2. 
$$k = 0$$
. only on

**5.** Graph the following parabolas.

a) 
$$y = -(x-1)^2 + 4$$



c) 
$$y = -\frac{1}{4}(x+2)^2$$



b) 
$$y = \frac{1}{2}(x-3)^2 - 2$$



d) 
$$y = \frac{1}{2}(x-3)^2 + 1$$



- **6.** Consider the function  $f(x) = -2(x-1)^2 + 2$  represented on the right.
  - $dom f = \mathbb{R}$ a) What is the domain of f?\_
  - ran  $f = ]-\infty, 2]$ b) What is the range of f?\_
  - 0 and 2 c) What are the zeros of f? \_
  - d) What is the *y*-intercept of *f*?
  - $f(x) \leq 0 \text{ if } x \in ]-\infty, \ 0] \cup [2, +\infty[$ e) What is the sign of *f*? \_\_\_\_\_



- f) Complete the study of the variation of f.
  - 1. f is increasing over  $1-\infty$ , 1] 2. f is decreasing over

V(1, 2)

- g) 1. Does function f reach a maximum? If yes, what is it? Yes; max f = 2
  - 2. Does function f reach a minimum? \_\_\_\_\_\_no
- Consider the function  $f(x) = \frac{1}{2}(x+1)^2 2$  represented on the right.
  - 2. ran f. \_\_\_\_\_\_[-2, +∞[ a) 1. dom f.  $\mathbb{R}$
  - b) 1. the zeros of f. -3 and 1 2. the y-intercept of f.
  - c) the sign of f.  $f(x) \ge 0$  over  $]-\infty$ ,  $-3] \cup [1, +\infty[; f(x) \le 0 \text{ over } [-3, 1]]$
  - d) the variation of f. f is increasing over [-1,  $+\infty$ [. f is decreasing over ]- $\infty$ , -1].
  - e) the minimum of f. min f = -2

96



a) 
$$f(x) = -2(x+1)^2 + 5$$

$$dom f = \mathbb{R}; ran f = ]-\infty, 5]$$

b) 
$$f(x) = \frac{3}{2}(x-1)^2 - 2$$
  
 $dom f = \mathbb{R}$ ;  $ran f = [-2, +\infty[$ 

$$dom f = \mathbb{R}; ran f = [-2, +\infty]$$

**9.** Determine the zeros of the function  $y = -2(x-3)^2 + 18$ . **0** and 6

**10.** What is the *y*-intercept of the function  $y = -2(x-3)^2 + 7?$  -11

The sign of the quadratic function  $f(x) = a(x - h)^2 + k$  depends on the signs of a and k. Indicate, in each of the 6 following cases, the intervals where f(x) > 0 and f(x) < 0.



**12.** Determine, in each case, the values of x for which

1. 
$$f(x) > 0$$
.

2. 
$$f(x) \ge 0$$
.

3. 
$$f(x) < 0$$
.

4. 
$$f(x) \leq 0$$
.

a) 
$$f(x) = 2(x-1)^2 - 2$$

1 
$$f(x) > 0$$
 if  $x \in ]-\infty, 0 [\cup] 2, +\infty[$ 

2. 
$$f(x) \ge 0$$
 if  $x \in ]-\infty, 0] \cup [2, +\infty[$ 

$$f(x) < 0 \text{ if } x \in ]0, 2[$$

4. 
$$f(x) \leq 0 \text{ if } x \in [0, 2]$$

b) 
$$f(x) = -4(x-3)^2 + 16$$

1. 
$$f(x) > 0 \text{ if } x \in ]1, 5[$$

$$f(x) \ge 0 \text{ if } x \in [1, 5]$$

2. 
$$f(x) \ge 0$$
 if  $x \in [1, 5]$   
3.  $f(x) < 0$  if  $x \in ]-\infty, 1 [\cup] 5, +\infty[$ 

4. 
$$f(x) \le 0 \text{ if } x \in ]-\infty, 1] \cup ][5, +\infty[$$

**13.** Determine the values of x for which  $y = 3(x - 1)^2 - 27$  is positive.

$$x \in ]-\infty, -2] \cup [4, +\infty[$$

**14.** Study the variation of the following functions.

a) 
$$f(x) = 3(x-1)^2 - 2$$

f is decreasing over ]-
$$\infty$$
, 1].

f is increasing over [1, 
$$+\infty$$
[.

b) 
$$f(x) = -2(x+1)^2 + 1$$

$$f$$
 is increasing over ]- $\infty$ , -1].

$$f$$
 is decreasing over [-1,  $+\infty$ [.

15. Determine the interval over which the function  $f(x) = 2(x+4)^2 + 2$  is increasing. [-4, + $\infty$ ]

**16.** Determine the values of x for which the function  $y = -3(x+1)^2 + 12$  is increasing.  $x \in ]-\infty, -1]$ 

- 17. In each of the following cases, indicate whether the function reaches a maximum or a minimum and determine it.
  - a)  $f(x) = -2(x-3)^2 1$

A maximum: max f = -1

b)  $f(x) = \frac{3}{4}(x+1)^2 - 2$ 

A minimum: min f = -2

- **18.** Find the extrema and its nature (maximum or minimum) of  $f(x) = 3(x-1)^2 4$ . A minimum; -4
- **19.** What is the axis of symmetry of the parabola with equation  $y = (x 1)^2$ ? The line x = 1
- **20.** Find the values of x for which the function  $f(x) = -2(x-1)^2 4$  is equal to -36.

## ACTIVITY 10 Finding the rule – Given the vertex and a point

The parabola on the right has the vertex V(1,-2) and passes through the point P(3,4). The quadratic function represented by this parabola has the rule:  $y = a(x - h)^2 + k$  (standard form).

Use the following procedure to determine the rule.



2. Determine a knowing that the point P(3, 4) verifies the function's rule.

We have: 
$$y = a(x - 1)^2 - 2$$
  
 $4 = a (3 - 1)^2 - 2$   
 $4 = 4a - 2$ 



 $y = \frac{3}{2}(x-1)^2 - 2$ 3. What is the rule of this function?



## FINDING THE RULE — GIVEN THE VERTEX AND A POINT

$$y = a(x - h)^2 + k$$

- 1. Identify h and k.
- 2. Find a after replacing x and y in the rule by the coordinates of the given point P.
- 3. Deduce the rule.

1. h = -1, k = 8 $y = a(x+1)^2 + 8$ 2.  $-4 = a(3 + 1)^2 + 8$ -4 = 16a + 8 $a = \frac{-3}{4}$ 





- 21. Determine the equation of the parabola with vertex V and passing through the given point P.
  - a) V(-1, 4) and P(2, -2)  $y = -\frac{2}{3}(x+1)^2 + 4$  b) V(0, 0) and P(-1, 2)
  - c) V(2, 0) and P(1, 4)  $y = 4(x-2)^2$  d) V(0, -1) and P(2, 1)  $y = \frac{1}{2}x^2 1$

**22.** A parabola with vertex V(3, 16) has a *y*-intercept equal to 7. What is the *y*-coordinate of the point A on the parabola whose *x*-coordinate is 5?

 $y = -(x-3)^2 + 16$ ; A(5, 12). The y-coordinate of point A is 12.

- **23.** A parabola with vertex V(3, 8) passes through the point A(6, -10). What are the points on this parabola whose y-coordinates are equal to 6?  $y = -2(x-3)^2 + 8$ ;  $P_1(2, 6)$  and  $P_2(4, 6)$
- **24.** What are the zeros of the parabola whose vertex is V(-1, 12) and passes through the point A(2, -15)?  $y = -3(x + 1)^2 + 12$ . The zeros are -3 and 1.
- **25.** A parabola with vertex V(6, 10) passes through the point P(10, 6). What is the initial value of this function?  $f(x) = -\frac{1}{4}(x-6)^2 + 10; f(0) = 1.$  The initial value is equal to 1.
- **26.** During a competition, a diver enters the water 2 seconds after jumping from the diving board and reaches a maximum depth of 9 m. The portion of the parabola on the right represents the diver's trajectory. If the diver remains underwater for 6 seconds, determine the height of the diving board.

 $f(x) = (x-5)^2 - 9$ ; f(0) = 16

The diving board is at a height of 16 m.



**27.** At its purchase, a share is worth \$6. We observe that the function *f*, which gives the value *y* of the share as a function of the time *x* in months since its purchase, is a quadratic function. The share reaches a maximum value of \$8 six months after its purchase. What is the value of this share 9 months after its purchase?

 $f(x) = \frac{-1}{18}(x - 6)^2 + 8$ ; f(9) = 7.5. The share is worth \$7.50.

28. We have represented on the right the trajectory of two fireworks launched at the same time.

The rule  $h = -2(t-4)^2 + 100$  gives the height h, in metres, as a function of the elapsed time, in seconds, since they were launched. Knowing that firework A explodes at a height of 92 m and that firework B explodes 1 second later, determine at what height firework B explodes at.

Firework A explodes 6 seconds after its launch.

Firework B explodes 7 seconds after its launch at a height of 82 m.

