1. The parabolic trajectory (path) of a ball thrown from Pat to Chris is illustrated in the Cartesian diagram below. The maximum height reached by the ball is 4 m.

Which of the following rules of correctly defines this parabola?

$$y = x^2 - 8x$$
 C) $y = -0.25 x^2 - 2x$
 $y = -4x^2 + 2x$ D) $y = -0.25 x^2 + 2x$

B)
$$y = -4x^2 + 2x$$

D)
$$v = -0.25 x^2 + 2x$$

What is the equation (rule) of the second-degree function that 2. has a range of $(-\infty, 4]$ and is positive for $x \in]-1, 3[$?

- What are the zeros of the function $f(x) = x^2 2x + 1$? 3.
- In a Cartesian plane, function f is represented by a parabola. Point P(-7, 172) is one of the points on this 4. parabola, and point V(3, -8) is its vertex. What is the rule of function f?
- 5. In a Cartesian plane, function f is represented by a parabola. The zeros of function f are 10 and 20, and its minimum is -75. What is the rule of function f?
- 6. The following graph represents the side view of the path of a dolphin as it performs a trick during a show at an aguarium. This path is composed of portions of two parabolas associated with function f and g respectively. The scale of the graph is in metres. The rule

$$f(x) = \frac{5}{9}(x-3)^2 - 5$$
 represents the dolphin's path when it

is in the water. When it is out of the water, the dolphin reaches a maximum height of 4 metres. The distance between points A and C is 10 metres. What is the rule of the function g?

- 7. Determine the equation of the second-degree function associated with the description provided.
 - a) The vertex is located at V(3, 2) and the graph passes through the point P(4, 3).
 - b) The two zeros are -3 and 1 and f(-1) = 2.
 - c) The equation of the axis of symmetry is x = -1. The maximum is 2 and the graph passes through the point P(4, -123).
 - d) The only zero of the function is -2 and f(-1) = -1.
 - e) Points P(-1, 7), Q(-9, 7) and R(-3, 1) are on the parabola representing the function.
 - f) The y-intercept is greater than or equal to the zeros, which are -1 and 5.

1.
$$V(4,4)$$
 zeros $(0,0)$ $_{2}(8,0)$
 $f(x) = a(x-0)(x-8)$
 $f(x) = a(x)(x-8)$
 $A = a(4)(4+8)$
 $A = a(4)$

5.
$$x_1 = 10$$
 $k = -75$ $h = 10 + 20 = 15$. $V(15, -75)$
 $x_2 = 20$

(1) $f(x) = a(x - 1)^2 + k$ (2) $f(x) = a(x - 1)(x - x_2)$
 $0 = a(20 - 15)^2 - 75$ $f(x) = a(x - 10)(x - 20)$
 $0 = a(5)^2 - 75$ $-75 = a(15 - 10)(15 - 20)$
 $0 = 25a - 75$ $-75 = a(5) - 5$
 $75 = 25a$ $-75 = 25a$
 $3 = a$ $3 = a$

$$f(x) = 3(x - 15)^2 - 75$$

$$f(x) = 3(x - 10)(x - 20)$$
6. $f(x) = \frac{5}{9}(x - 3)^2 - 5$ 0) find the gives $0 = \frac{5}{9}(x - 3)^2 - 5$
 $5 = \frac{5}{9}(x - 3)^2$
 $9 = (x - 3)^2$
 $9 = (x - 3)^2$
 $15 = x - 3$
 $15 =$

7. a)
$$v(3,2)$$
 $P(4,3)$

$$f(x) = a(x-3)^{2} + 2$$

$$3 = a(4-3)^{2} + 2$$

$$4 = a(1)^{4}$$

$$1 = a$$

$$\therefore f(x) = (x-3)^{2} + 2$$
b) $x_{1} = -3$

$$2 = a(1+3)(-1-1)$$

$$2 = a(2)(-2)$$

$$2 = -4a$$

$$- \frac{1}{2} = a$$

$$\therefore f(x) = -\frac{1}{2} = a$$

$$\Rightarrow vert_{1} = a$$

$$\Rightarrow vert_{2} = a$$

$$\Rightarrow (x+1)^{2} + 2$$

$$h = -\frac{9+-1}{2} = -\frac{10}{2} = -5$$

K<1

a is (+)

$$f(x) = a(x+5)^{2}$$

$$1 = a(-3+5)^{2}$$

$$1 = a(2)^{2}$$

$$1 = 4a$$

$$4 = a$$

$$f(x) = \frac{1}{4} (x+5)^{2}$$
check $7 = \frac{1}{4} (-1+5)^{2}$

$$7 = \frac{1}{4} (+4)^{2}$$

$$7 = \frac{1}{4} (16)$$

$$7 = 4$$

2 let k=-1

$$f(x) = a(x+5)^{2} - 1$$

$$1 = a(2)^{2} - 1$$

$$1 = 4a - 1$$

$$2 = 4a$$

$$\frac{1}{2} = a$$

$$f(x) = \frac{1}{2}(x+5)^{2} - 1$$

$$7 = \frac{1}{2}(-1+5)^{2} - 1$$

$$7 = \frac{1}{2}(4)^{2} - 1$$

$$7 = \frac{1}{2}(16) - 1$$

$$7 = 8 - 1$$

$$7 = 7$$

$$f(x) = \frac{1}{2}(x+5)^2 - 1$$

works for (9,7) too.

3eros: x=-1 $\chi_2 = 5$ OR f(x)= a (x+1/x-5) y-int > 5, so let P(0,5) be on the curve. 5 = a(0+1)(0-5)5 = a(1)(-5) 5 = -5a - | - a f(x) = -1(x+1)(x-5)or f(x) = -1(x2-4x-5) $f(x) = -x^2 + 4x + 5$ or $f(x) = -1(x^2 - 4x) + 5$ $f(x) = -1(x^2 - 4x + 4 - 4) + 5$ $f(x) = -1((x-2)^2 - 4) + 5$ $f(x) = -1(x-2)^2 + 4 + 5$ $f(x) = -1(x-2)^2 + 9$ * other answers are possible (let (0,0) by-int, etc.)