1. The parabolic trajectory (path) of a ball thrown from Pat to Chris is illustrated in the Cartesian diagram below. The maximum height reached by the ball is 4 m . Which of the following rules of correctly defines this parabola?
A) $y=x^{2}-8 x$
B) $y=-4 x^{2}+2 x$
C) $y=-0.25 x^{2}-2 x$
D) $y=-0.25 x^{2}+2 \mathrm{x}$
2. What is the equation (rule) of the second-degree function that has a range of $(-\infty, 4]$ and is positive for $x \in]-1,3[$?

3. What are the zeros of the function $f(x)=x^{2}-2 x+1$?
/
4. In a Cartesian plane, function f is represented by a parabola. Point $\mathrm{P}(-7,172)$ is one of the points on this parabola, and point $\mathrm{V}(3,-8)$ is its vertex. What is the rule of function f ?
5. In a Cartesian plane, function f is represented by a parabola. The zeros of function f are 10 and 20 , and its minimum is -75 . What is the rule of function f ?
6. The following graph represents the side view of the path of a dolphin as it performs a trick during a show at an aquarium. This path is composed of portions of two parabolas associated with function f and g respectively. The scale of the graph is in metres. The rule $f(x)=\frac{5}{9}(x-3)^{2}-5$ represents the dolphin's path when it is in the water. When it is out of the water, the dolphin reaches a maximum height of 4 metres. The distance between points A and C is 10 metres. What is the rule of the function g ?

7. Determine the equation of the second-degree function associated with the description provided.
a) The vertex is located at $V(3,2)$ and the graph passes through the point $P(4,3)$.
b) The two zeros are -3 and 1 and $f(-1)=2$.
c) The equation of the axis of symmetry is $x=-1$. The maximum is 2 and the graph passes through the point $P(4,-123)$.
d) The only zero of the function is -2 and $f(-1)=-1$.
D. Points $P(-1,7), Q(-9,7)$ and $R(-3,1)$ are on the parabola representing the function.
fe The y-intercept is greater than or equal to the zeros, which are -1 and 5 .

QUADRATIC FUNCTIONS (Extra Practice):

1. Determine the domain and range of the following functions.
a) $f(x)=-3(x-2)^{2}+5$
b) $f(x)=2 x^{2}+4 x-9$
\qquad
2. Determine the zeros of the function $f(x)=-3(x+1)^{2}+12$.
3. Determine the y-intercept of $f(x)=-\frac{1}{2}(x+4)^{2}+9$.
4. Determine over what interval the function $f(x)=2 x^{2}-5 x-3$ is positive.
5. Determine over what interval the function $f(x)=3 x^{2}+6 x-5$ is increasing. \qquad
6. Determine the extrema of the function $f(x)=-2 x^{2}+12 x-7$.
7. What is the axis of symmetry of the function $f(x)=-\frac{1}{4} x^{2}+3 x+1$? \qquad
8. Determine the values of x for which the function $f(x)=-3(x+4)^{2}+5$ is equal to -7 .
9. Find the rule of the quadratic function represented by a parabola with a vertex at $V(-1,5)$ and passing through the point $\mathrm{P}(1,3)$.
10. A stone is thrown upward from the top of a seaside cliff. The function which gives the stone's height $h($ in m) above sea level as a function of time t (in sec) since it was thrown has the rule: $h=-t^{2}+12 t+160$.
Find the interval of time over which the height of the stone is at least 180 m above sea level.
11. The height h, in metres, of a diver relative to the water level is described by the rule $h=\frac{1}{2} t^{2}-6 t+10$ where t represents the elapsed time, in seconds, since the start of the dive. How long did the diver remain underwater? A projectile is thrown upward from a height of 12 m . After 10 seconds, it reaches its maximum height and after 24 seconds, it hits the ground. Knowing that its trajectory follows the rule of a quadratic function, find the elapsed time between the moment it reaches a height of 6.5 m , on its descent, and the time when it hits the ground.

\qquad

Quadratic Functions Review 4

1. Determine the y-intercept for the following equation: $y=-\mathbf{3}(x-4)^{2}+\mathbf{1 0 0}$

?
Clearly explain in words $\boldsymbol{A} L L$ of the transformations that must be applied to $\boldsymbol{y}=\boldsymbol{x}^{2}$ to obtain the graph of the function below (point form is fine...). Consider shape of the curve and position on the Cartesian plane.

$$
y=-\frac{1}{4}(x+6)^{2}+12
$$

3. Sketch each quadratic and fill in the blanks below. An appropriate sketch would have 4 defined points.

Vertex: \qquad
Axis of Symmetry: \qquad
x-Intercepts: \qquad
y-Intercept: \qquad

Vertex: \qquad

Axis of Symmetry: \qquad

Max / Min: \qquad

Range: \qquad

Vertex: \qquad

Axis of Symmetry: \qquad

Domain: \qquad
4. For each quadratic equation below, solve for x (either by ZPP or QF). Then, imagine each quadratic equation is a function, and determine the vertex of the graph of the function by completing the square.

a. $x^{2}-11 x+24=0$	$x-\frac{1}{2} x^{2}-4 x=-10$
Zeros:	Zeros:
Vertex:	Vertex:
c. $x^{2}+6 x-27=0$	d. $x^{2}-6 x+9=0$
Zeros: Vertex:	Zeros: Vertex:
e. $x^{2}-11 x=0$	f. $x^{2}+12 x+36=0$
Zeros: Vertex:	Zeros: Vertex:
${ }^{8}\left(-5 x^{2}-40 x=0\right.$	$2 x^{2}+2 x=24$
Zeros: Vertex:	Zeros: Vertex:

5. Complete the table below for each relation:

6. Sideshow Bob fires a cannon hurtling Krusty the Clown through the air.

Krusty's path can be modelled by the equation $\boldsymbol{h}=-\mathbf{8} \boldsymbol{t}^{\mathbf{2}}+\mathbf{4 0 t}$, where \boldsymbol{t} is the time in seconds and \boldsymbol{h} is the height of Krusty above the ground in metres.
a) Create a rough sketch of Krusty's parabolic flight.
(label the vertex, the y-intercept, and show how you obtained them)

b) What is the maximum height reached by Krusty? \qquad m
c) After how long does Krusty reach his maximum height? \qquad S
d) How many seconds will it take for Krusty to land back on the ground? \qquad S
7. In 1993, Joe Carter hit a homerun over the left field wall at the SkyDome in the bottom of the $9^{\text {th }}$ to give the Blue Jays, and Canada, an unprecedented two World Series Championships in a row! It was amazing!
The function $\boldsymbol{h}=-\mathbf{0 . 0 0 1} \boldsymbol{d}^{2}+\mathbf{0} .4 \boldsymbol{d}+\mathbf{3}$ models the height, h feet, of Joe's ball as a function of the distance travelled, d feet, from home plate.
a) How high above the ground did Joe make contact with the ball? \qquad ft .
b) What was the height of the ball as it sailed over the wall 325 feet from home plate? \qquad ft.
c) How far from home plate was the ball when it began to fall back to the ground?
d) What was the height of the ball when it began to fall back to the ground?
\qquad ft .
\qquad ft.
e) How far from home plate would the ball have hit the ground? \qquad ft .
(Assume the ball lands on the ground)
f) Approximately how many feet did the ball travel at a height of at least 30 feet? \qquad ft.
g) Draw and label a rough sketch of the situation.

Include: zeros, vertex, y-intercept, axis of symmetry, points at which ball was 30 feet above the ground, home plate, the outfield wall, height of the ball as it sailed over the wall.

