1. For each of the following parabolas, find the coordinates of the vertex and the equation of the axis of symmetry.

a)
$$v = 2x^2 + 8x + 2$$

b)
$$y = -3x^2 + 6x - 6$$

$$V(-2, -6); x = -2$$

$$V(1, -3); x = 1$$

c)
$$y = 2x^2 - 3x$$

 $V\left(\frac{3}{4}, \frac{-9}{8}\right); x = \frac{3}{4}$

d)
$$y = -2x^2 + 6$$

 $V(0. 6): x = 0$

ACTIVITY 2 Finding the zeros – General form

Consider the quadratic function $f(x) = 2x^2 - 7x + 3$ (general form).

- a) What equation must we solve to determine the zeros of the function? $2x^2 7x + 3 = 0$
- b) Solve this equation to determine the zeros. a = 2; b = -7; c = 3; $\Delta = 25$; $x_1 = \frac{1}{2}$ and $x_2 = 3$

FINDING THE ZEROS - GENERAL FORM

Consider the function $f(x) = ax^2 + bx + c$.

To determine the zeros of function f, we solve the quadratic equation $ax^2 + bx + c = 0$.

(See solving quadratic equations page 33.)

Ex.: To find the zeros of $f(x) = 2x^2 - 5x - 12$, we solve $2x^2 - 5x - 12 = 0$. We get the zeros $\frac{-3}{2}$ and 4.

ACTIVITY 多 Graphing a parabola – General form

Consider the function $f(x) = 2x^2 - 4x - 6$.

Use the following procedure to graph the function.

- 1. Identify the parameters a, b and c. a = 2; b = -4; c = -6
- 2. Is the parabola open upward or downward? Upward since a > 0
- 3. What are the coordinates of the vertex? V(1, -8)
- 4. Find, if they exist, the zeros of the function. $\Delta = 64$. There are two zeros: $x_1 = -1$ and $x_2 = 3$.
- 5. What is the *y*-intercept? __-6
- 6. Complete the following table of values.

x = -1	0	1	2	3
y 0	-6	-8	-6	0

7. Graph the parabola.

