2. Consider the three forms of a quadratic function: $f(x)=a(x-h)^{2}+k$ (standard form). $f(x)=a x^{2}+b x+c$, (general form) and $f(x)=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ (factored form).
For each given form, determine the two other forms.
a) $f(x)=2(x-1)^{2}-8$

$f(x)=2 x^{2}-4 x-6$	(general form)
$f(x)=2(x+1)(x-3)$	(factored form)

b) $f(x)=x^{2}-10 x+16$
$f(x)=(x-5)^{2}-9 \quad$ (standard form)
$f(x)=(x-2)(x-8) \quad$ (factored form)
c) $f(x)=4 x^{2}-8 x+3$

$f(x)=4(x-1)^{2}-1 \quad$ (standard form)
$f(x)=4\left(x-\frac{3}{2}\right)\left(x-\frac{1}{2}\right)$ (factored form)

d) $f(x)=2(x-1)(x-5)$
$f(x)=2 x^{2}-12 x+10 \quad$ (general form)
$f(x)=2(x-3)^{2}-8 \quad$ (standard form)

Asisivary 2 Finding the rule - Given the zeros and a point

The parabola on the right has two zeros: -1 and 2 and passes through the point $\mathrm{P}(3,2)$.
The quadratic function represented by this parabola has the rule:
$y=a\left(x-x_{1}\right)\left(x-x_{2}\right)$ (factored form).
Use the following procedure to determine the factored form of the rule.

1. Identify x_{1} and $x_{2} . \boldsymbol{x}_{\boldsymbol{1}}=\mathbf{- 1}$ and $\boldsymbol{x}_{2}=\mathbf{2}$

2. Determine a knowing the coordinates of the point $(3,2)$ verify the rule.

We have: $y=a(x+1)(x-2)$
$2=a(3+1)(3-2)$
$2=4 a$
$a=\frac{1}{2}$
3. What is therefore the factored form of the rule? $y=\frac{1}{2}(x+1)(x-2)$
4. What is the general form?

$$
y=\frac{1}{2} x^{2}-\frac{1}{2} x-1
$$

FINDING THE RULE - GIVEN THE ZEROS AND A POINT

$$
y=a\left(x-x_{1}\right)\left(x-x_{2}\right)
$$

1. Identify the zeros x_{1} and x_{2}.
2. Determine a after replacing x and y in the rule by the coordinates of the point P.
3. Deduce the rule of the function.
4. $x_{1}=1 ; x_{2}=3$
$y=a(x-1)(x-3)$
5. $-6=a(4-1)(4-3)$
$-6=3 a$
$a=-2$
6. $y=-2(x-1)(x-3)$ (factored form) $y=-2 x^{2}+8 x-6$ (general form)

7. Find the rule, in general form, of each of the following quadratic functions.
a) A function with -5 and 2 as zeros and passing through the point $\mathrm{P}(3,16)$. $y=2 x^{2}+6 x-20$
b) A function with -3 and -1 as zeros and an initial value of -6 . $y=-2 x^{2}-8 x-6$
c) A function with the unique zero -2 and passing through the point $\mathrm{P}(-1,3)$. $y=3 x^{2}+12 x+12$
d) A function with the vertex $V(-1,4)$ and passing through the point $\mathrm{P}(2,-5)$.
$y=-x^{2}-2 x+3$
e) A function with the vertex $(1,-8)$ and one of the zeros equal to 3 .
$y=2 x^{2}-4 x-6$
8. What is the vertex of the parabola that has -2 and 4 for zeros and passes through the point $\mathrm{A}(5,21)$?
$y=3(x+2)(x-4) ; V(1,-27)$
9. A parabola with zeros -1 and 3 passes through the point $\mathrm{A}(2,6)$. What is the y-coordinate of the point B on the parabola that has an x-coordinate of 4 ?
$y=-2(x+1)(x-3) ; B(4,-10)$. The y-coordinate of point B is -10 .
10. A parabola with zeros -3 and 4 passes through the point $\mathrm{A}(2,-20)$. What are the points on this parabola that have a y-coordinate equal to 16 ?

$$
y=2(x+3)(x-4) ; P_{1}(-4,16) \text { and } P_{2}(5,16)
$$

7. What is the y-intercept of the parabola with zeros -3 and -1 and passing through the point $\mathrm{A}(-2,2)$?
The y-intercept is equal to -6 .
8. What is the equation of the axis of symmetry of a parabola with zeros -3 and 4 ?
$x=\frac{1}{2}$
9. The table of values on the right gives the coordinates of different points on a parabola. What is the equation of this parabola?
Axis of symmetry: $x=2$; The zeros are -1 and 5 .
$y=-(x+1)(x-5) ; y=-x^{2}+4 x+5$

x	y
0	5
1	8
3	8
5	0

10. Determine the range of the quadratic function f with zeros 3 and 5 which verifies $f(2)=-6$. $\left.f(x)=-2 x^{2}+16 x-30 ; V(4,2) ; \operatorname{ran} f=j-\infty, 2\right]$
11. What is the rule of the function f that has a range of $]-\infty, 4]$ and is positive over the interval $[-1,3] ? f(x)=-x^{2}+2 x+3$
12. The value of a share, in dollars, x weeks after its purchase is given by the rule $y=-0.1 x^{2}+x+4.5$. Do you make a profit or a loss if the share is sold two weeks after reaching its maximum value?
Value at purchase: $\$ 4.50 ; V(5,7) ; f(7)=\$ 6.60$. A profit of $\$ 2.10$ per share is made.
13. The position $f(t)$, in metres, of a diver relative to the surface is described by the rule $f(t)=0.5 t^{2}-6 t+10$ where t represents elapsed time, in seconds. How long was the diver under water?
$f(t) \leqslant 0 \Leftrightarrow 2 \leqslant t \leqslant 10$. The diver was under water during 8 seconds.
14. The trajectory of a stone thrown from a seaside cliff is a partial parabola. The position $f(t)$, in metres, of the stone relative to sea level is given by $f(t)=-t^{2}+8 t+20$ where t represents elapsed time in seconds since it was thrown. How many seconds after reaching its maximum height will the stone hit the water?
After 6 seconds.
15. The manager of a movie theatre has calculated the following results. When the cost of admission is set at $\$ 10$, he observes on average 100 spectators per showing and for each $\$ 0.50$ rebate on the admission price, he notices an average of 10 more spectators.
a) Find the rule which gives the total revenue per showing as a function of the number x of $\$ 0.50$ rebates.
$R(x)$: Total revenue per showing.

$$
R(x)=(10-0.5 x)(100+10 x) ; R(x)=-5 x^{2}+50 x+1000
$$

b) 1. At what amount should the manager set the cost of admission in order to maximize the revenue per showing?
The function R reaches its maximum when $x=5$. The price of admission should be set at $\$ 7.50$.
2. What is the total maximum revenue per showing? $\$ \mathbf{1 1 2 5}$
16. A stone is thrown upward from a height of 4 m . After 3 s , it reaches its maximum height and after 8 s , it hits the ground. Its trajectory is parabolic.

1. What is the maximum height reached by the stone?

$$
6.25 \mathrm{~m}
$$

2. Determine the elapsed time from the moment the stone was at a height of 2.25 m during its descent to the moment it hit the ground.

1 second

