- c) The general form of the equation of a circle is: $x^2 + y^2 6x + 4y 12 = 0$. - 1. Justify the steps allowing us to write the equation in the standard form. | Steps | Justifications | |--|---| | 1. $x^{2} + y^{2} - 6x + 4y - 12 = 0$
2. $x^{2} - 6x + \dots + y^{2} + 4y + \dots = 12$
3. $x^{2} - 6x + 9 + y^{2} + 4y + 4 = 12 + 9 + 4$
4. $(x - 3)^{2} + (y + 2)^{2} = 25$ | General equation of the circle. We add 12 to each side. We complete in order to obtain perfect square trinomials. We factor the perfect square trinomials to obtain the standard form. | 2. Identify the centre and the radius of the circle. __Centre: (3, -2); radius: 5. ## **EQUATION OF A CIRCLE — GENERAL FORM** Expanding the standard form of the equation of a circle $(x - h)^2 + (y - k)^2 = r^2$, we obtain $$x^2 + y^2 + ax + by + c = 0$$ Ex.: $$(x+3)^2 + (y-2)^2 = 25$$ (Standard form) $\Leftrightarrow x^2 + 6x + 9 + y^2 - 4y + 4 = 25$ $\Leftrightarrow x^2 + y^2 + 6x - 4y - 12 = 0$ (General form) - The curve with equation: $x^2 + y^2 + ax + by + c = 0$ is represented by a circle in the Cartesian - From the general form of the equation of a circle, we can find the standard form of the circle equation (See activity 3c)). - **10.** In each of the following cases, find the equation of circle $\mathscr C$ in the standard form and then in 1. $$(x + 1)^2 + (y - 3)^2 = 4$$ $$2. \quad x^2 + y^2 + 2x - 6y + 6 = 0$$ c) Centre $$(2,-1)$$; $M(-1,3) \in \mathcal{C}$. 1. $$(x-2)^2 + (y+1)^2 = 25$$ 2. $$x^2 + y^2 - 4x + 2y - 20 = 0$$ **b)** Centre (0, -3); radius 2. 1. $$x^2 + (y+3)^2 = 4$$ $$2. \quad x^2 + y^2 + 6y + 5 = 0$$ **d)** \overline{AB} is a diameter, A(-2, 1) and B(4, -3). 1. $$(x-1)^2 + (y+1)^2 = 13$$ $$2. \quad x^2 + y^2 - 2x + 2y - 11 = 0$$ - **11.** For each of the following circles, - 1. write the equation of the circle in the standard form. - 2. find the centre and the radius of the circle. a) $$x^2 + y^2 - 2x + 4y - 4 = 0$$ $(x-1)^2 + (y+2)^2 = 9$ $\omega(1,-2); r = 3$ b) $$x^2 + y^2 + 8x + 4y + 19 = 0$$ $(x + 4)^2 + (y + 2)^2 = 1$ $\omega(-4, -2); r = 1$ c) $$x^2 + y^2 - 4x + 6y - 4 = 0$$ $(x-2)^2 + (y+3)^2 = 17$ $$\omega(2, -3); r = \sqrt{17}$$ d) $$x^2 + y^2 - x + 3y - 1.5 = 0$$ $$\frac{\left(x - \frac{1}{2}\right)^2 + \left(y + \frac{3}{2}\right)^2 = 4}{\omega \left(\frac{1}{2}, \frac{-3}{2}\right)^2; r = 2}$$ $$\omega(2,-3);\ r=\sqrt{17}$$ **12.** Explain why each of the following equations is not that of a circle. a) $$x^2 + y^2 - 4x + 6y + 14 = 0$$ $(x - 2)^2 + (y + 3)^2 = -1$. The sum of 2 squares cannot be negative. b) $$x^2 - y^2 - 2x - 4y - 19 = 0$$ The coefficient of y^2 cannot be negative. **13.** Determine, if they exist, the intersection points of circle $$\mathscr{C}$$ with line l . a) $$\mathscr{C}: (x-1)^2 + (y+2)^2 = 9$$ b) $\mathscr{C}: (x+1)^2 + (y-2)^2 = 2$ c) $\mathscr{C}: (x+2)^2 + (y+1)^2 = 1$ $l: x-y+1=0$ $$(1, 1)$$ and $(4, -2)$ (a) $$\mathscr{C}: (x+1)^2 + (y-2)^2 = 2$$ (b) $\mathscr{C}: (x+2)^2 + (y+1)^2 = 0$ (c) $i: x-y-1=0$ c) $$\mathscr{C}: (x+2)^2 + (y+1)^2 = 1$$ $l: x-y-1=0$ **d)** $$\mathscr{C}: x^2 + y^2 - 2x + 4y + 1 = 0$$ $l: x - y - 1 = 0$ $$(1, 0)$$ and $(-1, -2)$ e) $$\mathscr{C}: x^2 + y^2 = 9$$ $l: x + y = 5$ d) $$\mathscr{C}: x^2 + y^2 - 2x + 4y + 1 = 0$$ e) $\mathscr{C}: x^2 + y^2 = 9$ l: $x - y - 1 = 0$ l: $x + y = 5$ f) $\mathscr{C}: x^2 + y^2 - 2x + 4y - 20 = 0$ l: $3x + 4y - 20 = 0$ a) $$x^2 + y^2 \le 9$$ **b)** $$(x-2)^2 + (y-1)^2 \ge 4$$ c) $$x^2 + y^2 + 4x + 2y + 1 < 0$$ **d)** $$x^2 + y^2 + 2x - 3 > 0$$ ## **15.** For each of the following regions, determine the inequality that defines it. $$(x+1)^2 + (y-1)^2 \le 4$$ $$(x-3)^2 + (y-1)^2 > \frac{9}{4}$$