ASTJVITY

Consider on the right the circle 6 with equation: $(x-2)^{2}+(y-1)^{2}=5$ and point $\mathrm{A}(1,3)$ on this circle.
a) Find the coordinates of the centre ω of this circle.
$\omega(2,1)$
b) Draw the line l passing through point A and perpendicular to the radius $\omega \mathrm{A}$.
This line l intersects circle \mathscr{C} in only one point. Line l is called tangent to the circle at point A .

c) Find the equation of line l.

$$
y=\frac{1}{2} x+\frac{5}{2}
$$

LINE TANGENT TO A CIRCLE

- A line is tangent to a circle if it intersects the circle in only one point called point of tangency.
Ex.: Given the circle on the right,
- line l is tangent to the circle at point A.
- A is the point of tangency.

- Properties of the tangent:
- The tangent is perpendicular to the radius at the point of tangency.

$$
l \perp \overline{\omega \mathrm{~A}}
$$

- The distance between the centre ω and the tangent l is equal to the radius r.

$$
d(\omega, l)=r
$$

- Given a point A on a circle, there exists only one line tangent to the circle at point A .

16. Consider the circle with equation: $(x+1)^{2}+(y-2)^{2}=25$.
a) Verify that point $\mathrm{A}(2,6)$ is a point on this circle. \qquad $(2+1)^{2}+(6-2)^{2}=25$
b) What are the coordinates of the centre ω of the circle? \qquad
c) Explain the procedure to find the equation of the line l tangent to the circle at point A .
17. We calculate the slope of the radius $\overline{\omega A}$.
18. We deduce the slope of the tangent l knowing that $\overline{\omega \mathbf{A}} \perp l$.

3. We find the equation of the line l passing through point $A(2,6)$ knowing its slope.

d) Find the equation of the tangent l at point A.

1. $a_{-a}=\frac{6-2}{2+1}=\frac{4}{3}$
2. $a_{d}=\frac{-3}{4}$
3. $d: y=-\frac{3}{4} x+\frac{15}{2}$
4. Use the data from exercise 16. Justify the steps allowing us to find the equation of the tangent l at point A using the scalar product.

	Steps	Justifications
1.	$\mathrm{M}(x, y) \in d \Leftrightarrow \overline{\mathrm{AM}} \perp \overrightarrow{\mathrm{A} \omega}$	Property of the tangent.
2.	$\Leftrightarrow \overline{\mathrm{AM}} \cdot \overrightarrow{\mathrm{A} \omega}=0$	Property of the scalar product.
3.	$\Leftrightarrow(x-2, y-6) \cdot(-3,-4)=0$	Calculating the vector components.
4.	$\Leftrightarrow-3(x-2)-4(y-6)=0$	Calculating the scalar product.
5.	$\Leftrightarrow-3 x-4 y+30=0$	Equation of line l (general form).
6.	$\Leftrightarrow y=-\frac{3}{4} x+\frac{15}{2}$	Equation of line l (functional form).

18. Find the equation of the tangent to the circle with equation: $x^{2}+y^{2}-2 x+4 y-35=0$ at point $A(3,4)$.

$$
\mathscr{C}:(x-1)^{2}+(y+2)^{2}=40 ; \quad \omega(1,-2) ; \quad a_{w A}=3 ; \quad l: y=-\frac{1}{3} x+5
$$

19. Find the equation of the circle with centre $w(-2,3)$ if the circle is tangent to
a) the x-axis. $(x+2)^{2}+(y-3)^{2}=9$
b) the y-axis. $(x+2)^{2}+(y-3)^{2}=4$
20. Consider the line $l: 2 x+y-4=0$ and a point $w(1,-3)$.
a) Find the equation of the circle \mathscr{C} centred at ω and tangent to line l.

$$
\text { Radius }=d(\omega, l)=\sqrt{5} ;(x-1)^{2}+(y+3)^{2}=5
$$

b) Find the coordinates of the point of tangency A. $A(3,-2)$
21. Consider the circle \mathscr{C} with equation: $x^{2}+y^{2}=18$.
a) Find the coordinates of points A_{1} and A_{2} on the circle which have an x-coordinate equal to $3 ., A_{1}^{2}(3,3)$ and $A_{2}(3,-3)$
b) Find the equation of the lines l_{1} and l_{2} tangent to circle \mathscr{C} at points A_{1} and A_{2} respectively.

$$
l_{1}: y=-x+6 \text { and } l_{2}: y=x-6
$$

c) Show that lines l_{1} and l_{2} meet at a point P located on the x-axis.

$$
\text { The system }\left\{\begin{array}{l}
y=-x+6 \\
y=x-6
\end{array} \text { has solution } P(6,0)\right.
$$

d) Show that the quadrilateral $0 A_{1} \mathrm{PA}_{2}$ is a square.

$$
\begin{aligned}
& m \overline{O A_{1}}=m \overline{A_{1} P}=m \overline{P A_{2}}=m \overline{O A_{2}}=\sqrt{18} \Rightarrow O A_{1} P A_{2} \text { is a rhombus. } \angle O A_{1} P \text { is a right angle }(\text { Pro- } \\
& \text { perty of the tangent }) \Rightarrow O A_{1} P A_{2} \text { is a square, since one of the angles of the rhombus is right. }
\end{aligned}
$$

e) Calculate the area of the region bounded by the line segment PA_{1}, the line segment PA_{2} and the arc of circle $\mathrm{A}_{1} \mathrm{~A}_{2}$. Area of square $0 \mathrm{~A}_{1} P A_{2}=\mathbf{1 8} \mathbf{u}^{2}$
Area of the circular sector $A_{1} 0 A_{2}=\frac{18 \pi}{4} u^{2}$ (one quarter of the dish). Requested area $=\left(18-\frac{9 \pi}{2}\right) u^{2}$.

