ACTIVITY 4 Line tangent to a circle

Consider on the right the circle \mathscr{C} with equation: $(x - 2)^2 + (y - 1)^2 = 5$ and point A(1, 3) on this circle. A(1, 3) a) Find the coordinates of the centre ω of this circle. $\omega(2, 1)$ **b)** Draw the line *l* passing through point A and perpendicular to the 1 radius ωA . 0 This line l intersects circle \mathscr{C} in only one point. Line l is called tangent to the circle at point A. $y = \frac{1}{2}x + \frac{5}{2}$ **c)** Find the equation of line *l*. LINE TANGENT TO A CIRCLE A line is tangent to a circle if it intersects the circle in only one point called point of tangency. Ex.: Given the circle on the right, - line *l* is tangent to the circle at point A. A is the point of tangency. Properties of the tangent: The tangent is perpendicular to the radius at the point of tangency. $l \perp \omega A$ - The distance between the centre ω and the tangent *l* is equal to the radius *r*. $d(\omega, l) = r$ – Given a point A on a circle, there exists only one line tangent to the circle at point A. **16.** Consider the circle with equation: $(x + 1)^2 + (y - 2)^2 = 25$. a) Verify that point A(2, 6) is a point on this circle. $(2 + 1)^2 + (6 - 2)^2 = 25$ ω(-1, 2) **b)** What are the coordinates of the centre ω of the circle? c) Explain the procedure to find the equation of the line *l* tangent to the circle at point A. 1. We calculate the slope of the radius $\overline{\omega A}$. 2. We deduce the slope of the tangent l knowing that $\overline{\omega A} \perp l$.

3. We find the equation of the line l passing through point A(2, 6) knowing its slope.

d) Find the equation of the tangent *l* at point A.

1. $a_{\omega a} = \frac{6-2}{2+1} = \frac{4}{3}$ 2. $a_d = \frac{-3}{4}$ 3. $d: y = -\frac{3}{4}x + \frac{15}{2}$

328 Chapter 7 Conics

© Guérin, éditeur Itée

17. Use the data from exercise 16. Justify the steps allowing us to find the equation of the tangent *l* at point A using the scalar product.

A(2, 6) M(x, y)w (-1, 2)

	Steps	Justifications
1.	$\mathbf{M}(x,y) \in d \Leftrightarrow \overrightarrow{\mathbf{A}\mathbf{M}} \perp \overrightarrow{\mathbf{A}\omega}$	Property of the tangent.
2.	$\Leftrightarrow \overrightarrow{\mathrm{AM}} \cdot \overrightarrow{\mathrm{A\omega}} = 0$	Property of the scalar product.
3.	$\Leftrightarrow (x-2, y-6) \cdot (-3, -4) = 0$	Calculating the vector components.
4.	$\Leftrightarrow -3(x-2) - 4(y-6) = 0$	Calculating the scalar product.
5.	$\Leftrightarrow -3x - 4y + 30 = 0$	Equation of line l (general form).
6.	$\Leftrightarrow y = -\frac{3}{4}x + \frac{15}{2}$	Equation of line l (functional form).

18. Find the equation of the tangent to the circle with equation: $x^2 + y^2 - 2x + 4y - 35 = 0$ at point A(3, 4). $\mathscr{C}: (x - 1)^2 + (y + 2)^2 = 40; \quad \omega(1, -2); \quad a_{\omega A} = 3; \quad l: y = -\frac{1}{3}x + 5$

- **19.** Find the equation of the circle with centre $\omega(-2, 3)$ if the circle is tangent to
 - a) the x-axis. $(x + 2)^2 + (y 3)^2 = 9$ b) the y-axis. $(x + 2)^2 + (y - 3)^2 = 4$

20. Consider the line l: 2x + y - 4 = 0 and a point $\omega(1, -3)$.

- a) Find the equation of the circle \mathscr{C} centred at ω and tangent to line *l*. **Radius** = $d(\omega, l) = \sqrt{5}$; $(x - 1)^2 + (y + 3)^2 = 5$
- b) Find the coordinates of the point of tangency A. A(3, -2)

21. Consider the circle \mathscr{C} with equation: $x^2 + y^2 = 18$.

- a) Find the coordinates of points A_1 and A_2 on the circle which have an *x*-coordinate equal to 3. $A_1(3, 3)$ and $A_2(3, -3)$
- b) Find the equation of the lines l_1 and l_2 tangent to circle \mathscr{C} at points A_1 and A_2 respectively. $l_1: y = -x + 6$ and $l_2: y = x - 6$
- c) Show that lines l_1 and l_2 meet at a point P located on the x-axis. The system $\begin{cases} y = -x + 6 \\ y = x - 6 \end{cases}$ has solution P(6, 0)

- d) Show that the quadrilateral OA_1PA_2 is a square. $mOA_1 = mA_1P = mPA_2 = mOA_2 = \sqrt{18} \Rightarrow OA_1PA_2$ is a rhombus. $\angle OA_1P$ is a right angle (Property of the tangent) $\Rightarrow OA_1PA_2$ is a square, since one of the angles of the rhombus is right.
- e) Calculate the area of the region bounded by the line segment PA_1 , the line segment PA_2 and the arc of circle A_1A_2 . Area of square $0A_1PA_2 = 18 u^2$

Area of the circular sector $A_1 0 A_2 = \frac{18\pi}{4} u^2$ (one quarter of the disk). Requested area = $\left(18 - \frac{9\pi}{2}\right) u^2$.

© Guérin, éditeur ltée

7.2 Circle 329